北京市首都師范大學附屬回龍觀育新學校2021-2022學年高考適應性考試數(shù)學試卷含解析_第1頁
北京市首都師范大學附屬回龍觀育新學校2021-2022學年高考適應性考試數(shù)學試卷含解析_第2頁
北京市首都師范大學附屬回龍觀育新學校2021-2022學年高考適應性考試數(shù)學試卷含解析_第3頁
北京市首都師范大學附屬回龍觀育新學校2021-2022學年高考適應性考試數(shù)學試卷含解析_第4頁
北京市首都師范大學附屬回龍觀育新學校2021-2022學年高考適應性考試數(shù)學試卷含解析_第5頁
免費預覽已結束,剩余16頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.2.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.3.已知函數(shù),若,則下列不等關系正確的是()A. B.C. D.4.曲線在點處的切線方程為,則()A. B. C.4 D.85.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.6.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米7.若關于的不等式有正整數(shù)解,則實數(shù)的最小值為()A. B. C. D.8.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形9.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數(shù)是()A.3 B.4 C.5 D.610.設,,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.12.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在的零點個數(shù)為________.14.已知,,,則的最小值是__.15.已知函數(shù),若恒成立,則的取值范圍是___________.16.在平面直角坐標系中,曲線上任意一點到直線的距離的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機構借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計40歲及以下15355040歲以上203050合計3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機抽取3人贈送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機變量的分布列、數(shù)學期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63518.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.19.(12分)如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數(shù)m,都有,并證明你的結論.20.(12分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.21.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.22.(10分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補充在上面問題中并作答.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.2.A【解析】

根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運算能力,屬于基礎題.3.B【解析】

利用函數(shù)的單調(diào)性得到的大小關系,再利用不等式的性質(zhì),即可得答案.【詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.4.B【解析】

求函數(shù)導數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數(shù)的幾何意義,切線方程,屬于中檔題.5.B【解析】

根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結合的數(shù)學思想方法,考查分析思考與解決問題的能力,屬于難題.6.D【解析】

根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.7.A【解析】

根據(jù)題意可將轉化為,令,利用導數(shù),判斷其單調(diào)性即可得到實數(shù)的最小值.【詳解】因為不等式有正整數(shù)解,所以,于是轉化為,顯然不是不等式的解,當時,,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當時,,故,解得.故選:A.【點睛】本題主要考查不等式能成立問題的解法,涉及到對數(shù)函數(shù)的單調(diào)性的應用,構造函數(shù)法的應用,導數(shù)的應用等,意在考查學生的轉化能力,屬于中檔題.8.C【解析】

利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當時,為直角三角形;當時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.9.B【解析】

通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.10.A【解析】

根據(jù)對數(shù)的運算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.11.D【解析】

以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.12.B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點:交集及其運算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求出的范圍,再由函數(shù)值為零,得到的取值可得零點個數(shù).【詳解】詳解:由題可知,或解得,或故有3個零點.【點睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點,屬于基礎題.14..【解析】

因為,展開后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當且僅當,取等號.故答案為:【點睛】本題主要考查利用基本不等式求最值,考查學生的轉化能力和運算求解能力.15.【解析】

求導得到,討論和兩種情況,計算時,函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案。【詳解】因為,所以,因為,所以.當,即時,,則在上單調(diào)遞增,從而,故符合題意;當,即時,因為在上單調(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點睛】本題考查了不等式恒成立問題,轉化為函數(shù)的最值問題是解題的關鍵.16.【解析】

解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標,再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當且僅當時,即當時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導數(shù)法):曲線的函數(shù)解析式為,則,設過曲線上任意一點的切線與直線平行,則,解得,當時,到直線的距離;當時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉化為利用切線與直線平行來找出切點,轉化為切點到直線的距離,也可以設曲線上的動點坐標,利用基本不等式法或函數(shù)的最值進行求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)不能在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關;(2)①;②分布列見解析,,【解析】

(1)計算再對照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經(jīng)常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計算3人或4人偶爾或不用信用卡的概率即可.②利用二項分布的特點求解變量的分布列、數(shù)學期望和方差即可.【詳解】(1)由列聯(lián)表可知,,因為,所以不能在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關.(2)①依題意,可知所抽取的10名40歲及以下網(wǎng)民中,經(jīng)常使用信用卡的有(人),偶爾或不用信用卡的有(人).則選出的4人中至少有3人偶爾或不用信用卡的概率.②由列聯(lián)表,可知40歲以上的網(wǎng)民中,抽到經(jīng)常使用信用卡的頻率為,將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經(jīng)常使用信用卡的市民的概率為.由題意得,則,,,.故隨機變量的分布列為:0123故隨機變量的數(shù)學期望為,方差為.【點睛】本題主要考查了獨立性檢驗以及超幾何分布與二項分布的知識點,包括分類討論以及二項分布的數(shù)學期望與方差公式等.屬于中檔題.18.(1);(2)4【解析】

(1)根據(jù)已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結合基本不等式,求出的最大值,即可求出結論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當且僅當時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應用基本不等式求最值,屬于基礎題.19.(1);(2)存在,Q為線段中點【解析】

解法一:(1)作出平面與平面的交線,可證平面,計算,,得出,從而得出的大??;(2)證明平面,故而可得當Q為線段的中點時.解法二,以為原點,以為建立空間直角坐標系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設上存在一定點Q,設此點的橫坐標為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設與平面的公共點為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點,,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當Q為線段中點時,對于任意的實數(shù),都有.解法二:(1)建立如圖所示的空間直角坐標系,則,,所以,,,又由,,則為平面的一個法向量,設直線AP與平面所成角為,則,故當時,直線AP與平面所成角為.(2)若在上存在一定點Q,設此點的橫坐標為,則,,依題意,對于任意的實數(shù)要使,等價于,即,解得,即當Q為線段中點時,對于任意的實數(shù),都有.【點睛】本題考查了線面垂直的判定定理、線面角的計算,考查了空間向量在立體幾何中的應用,屬于中檔題.20.(1)(2)點在以為直徑的圓上【解析】

(1)根據(jù)題意列出關于,,的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論