版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年上海工會管理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知函數(shù)f
(x)=logx,則方程()|x|=|f(x)|的實(shí)根個數(shù)是()
A.1
B.2
C.3
D.2006答案:B2.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則
k=______.答案:因?yàn)橐阎獂2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.3.若定義運(yùn)算a⊕b=b,a<ba,a≥b則函數(shù)f(x)=2x⊕(12)x的值域?yàn)開_____(用區(qū)間表示).答案:由題意畫出f(x)=2x?(12)x的圖象(實(shí)線部分),由圖可知f(x)的值域?yàn)閇1,+∞).故為:[1,+∞).4.一個長方體共一頂點(diǎn)的三個面的面積分別是2、3、6,這個長方體的體積是()A.6B.6C.32D.23答案:可設(shè)長方體同一個頂點(diǎn)上的三條棱長分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個長方體的體積是6故為B5.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.6.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對于平面上任意一點(diǎn)M,若p、q分別是M到直線l1和l2的距離,則稱有序非負(fù)實(shí)數(shù)對(p,q)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個;
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個;
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個.
上述命題中,正確命題的個數(shù)是()A.0B.1C.2D.3答案:①正確,此點(diǎn)為點(diǎn)O;②不正確,注意到p,q為常數(shù),由p,q中必有一個為零,另一個非零,從而可知有且僅有4個點(diǎn),這兩點(diǎn)在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個交點(diǎn)為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點(diǎn);故選C.7.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點(diǎn)P的坐標(biāo)為(2,1),那么()
A.點(diǎn)P在直線L上,但不在圓M上
B.點(diǎn)P在圓M上,但不在直線L上
C.點(diǎn)P既在圓M上,又在直線L上
D.點(diǎn)P既不在直線L上,也不在圓M上答案:C8.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個動點(diǎn),如果延長F1P到Q,使得|PQ|=|PF2|,那么動點(diǎn)Q的軌跡是()
A.圓
B.橢圓
C.雙曲線的一支
D.拋物線答案:A9.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點(diǎn)P(2,1,1)為L上距離原點(diǎn)O最近的點(diǎn),則______為L的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點(diǎn)O最近的點(diǎn),∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)10.一條直線上順次有A、B、C三點(diǎn),且|AB|=2,|BC|=3,則C分有向線段AB的比為()
A.-
B.-
C.-
D.-答案:A11.下列關(guān)于算法的說法中正確的個數(shù)是()
①求解某一類問題的算法是唯一的;
②算法必須在有限步操作之后停止;
③算法的每一步操作必須是明確的,不能有歧義或模糊;
④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個數(shù)是3.故選C.12.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.13.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號與不等號的關(guān)系。14.點(diǎn)(2,0,3)在空間直角坐標(biāo)系中的位置是在()
A.y軸上
B.xOy平面上
C.xOz平面上
D.第一卦限內(nèi)答案:C15.一個單位有職工800人,其中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級職稱的職工為10人,則樣本容量為()
A.10
B.20
C.40
D.50答案:C16.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標(biāo)原點(diǎn))的一個法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設(shè)平面AOB(O是坐標(biāo)原點(diǎn))的一個法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.17.在吸煙與患肺病這兩個分類變量的計(jì)算中,下列說法正確的是()
A.若k2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時(shí),我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤
D.以上三種說法都不正確答案:D18.已知點(diǎn)E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點(diǎn)E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因?yàn)辄c(diǎn)E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點(diǎn)為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.19.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有如下一組數(shù)據(jù):
x24568y3040605070若y與x之間的關(guān)系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y關(guān)于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.20.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C21.滿足{1,2}∪A={1,2,3}的集合A的個數(shù)為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數(shù)為4.22.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點(diǎn),
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.答案:(1)點(diǎn)E的坐標(biāo)是(1,1,1)(2)F是AD的中點(diǎn)時(shí)滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點(diǎn)E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點(diǎn)的坐標(biāo)為(1,0,0)即點(diǎn)F是AD的中點(diǎn)時(shí)滿足EF⊥平面PCB.23.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是
______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.24.直線2x-3y+10=0的法向量的坐標(biāo)可以是答案:C25.現(xiàn)有以下兩項(xiàng)調(diào)查:①某校高二年級共有15個班,現(xiàn)從中選擇2個班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是()A.簡單隨機(jī)抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡單隨機(jī)抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個班中選擇2個班,檢查其清潔衛(wèi)生狀況;總體個數(shù)不多,而且差異不大,故可采用簡單隨機(jī)抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是簡單隨機(jī)抽樣法,分層抽樣法故選A26.圓x2+y2=1和圓x2+y2-6y+5=0的位置關(guān)系是()
A.外切
B.內(nèi)切
C.外離
D.內(nèi)含答案:A27.擲一顆均勻的骰子,若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點(diǎn)、出現(xiàn)偶數(shù)點(diǎn).若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點(diǎn)”,故為出現(xiàn)偶數(shù)點(diǎn).28.平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點(diǎn),求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當(dāng)n=1時(shí),1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設(shè)n=k時(shí),k≥1命題成立,即k條滿足題設(shè)的直線把平面分成12(k2+k+2)塊,那么當(dāng)n=k+1時(shí),第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說明當(dāng)n=k+1時(shí),命題也成立.由(1)(2)知,對一切n∈N*,命題都成立.29.雙曲線x29-y216=1的兩個焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為______.答案:設(shè)點(diǎn)P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.30.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則
f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.31.O是正六邊形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O為端點(diǎn)的向量中:
(1)與a相等的向量有
______;
(2)與b相等的向量有
______;
(3)與c相等的向量有
______.答案:如圖,在O是正六邊形ABCDE的中心,以A,B,C,D,E,O為端點(diǎn)的向量中(1)與a相等的向量有EF,DO,CB;(2)與b相等的向量有DC,EO,F(xiàn)A;(3)與c相等的向量有FO,OC,ED.故三個空依次應(yīng)填EF,DO,CB;DC,EO,F(xiàn)A;FO,OC,ED.32.中心在原點(diǎn),焦點(diǎn)在橫軸上,長軸長為4,短軸長為2,則橢圓方程是(
)
A.
B.
C.
D.答案:B33.直線kx-y+1=3k,當(dāng)k變動時(shí),所有直線都通過定點(diǎn)()
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C34.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.35.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.
①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.
②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).36.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于
A.2
B.
C.4
D.答案:A37.某校欲在一塊長、短半軸長分別為10米與8米的橢圓形土地中規(guī)劃一個矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.
A.80
B.160
C.320
D.160答案:B38.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,則全班學(xué)生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:239.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(diǎn)(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線的下方的概率是636=16故選A.40.k取何值時(shí),一元二次方程kx2+3kx+k=0的兩根為負(fù)。答案:解:∴k≤或k>341.命題“正數(shù)的絕對值等于它本身”的逆命題是______.答案:將命題“正數(shù)的絕對值等于它本身”改寫為“若一個數(shù)是正數(shù),則其絕對值等于它本身”,所以逆命題是“若一個數(shù)的絕對值等于它本身,則這個數(shù)是正數(shù)”,即“絕對值等于它本身的數(shù)是正數(shù)”.故為:“絕對值等于它本身的數(shù)是正數(shù)”.42.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個數(shù)據(jù)中位數(shù)為45乙組共9個數(shù)據(jù)中位數(shù)為46故為45、4643.橢圓x=3cosθy=4sinθ的離心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其離心率e=ca=74.故為:74.44.在獨(dú)立性檢驗(yàn)中,統(tǒng)計(jì)量Χ2有兩個臨界值:3.841和6.635.當(dāng)Χ2>3.841時(shí),有95%的把握說明兩個事件有關(guān),當(dāng)Χ2>6.635時(shí),有99%的把握說明兩個事件有關(guān),當(dāng)Χ2≤3.841時(shí),認(rèn)為兩個事件無關(guān).在一項(xiàng)打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計(jì)算Χ2=20.87.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間()
A.有95%的把握認(rèn)為兩者有關(guān)
B.約有95%的打鼾者患心臟病
C.有99%的把握認(rèn)為兩者有關(guān)
D.約有99%的打鼾者患心臟病答案:C45.已知兩定點(diǎn)F1(5,0),F(xiàn)2(-5,0),曲線C上的點(diǎn)P到F1、F2的距離之差的絕對值是8,則曲線C的方程為()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:據(jù)雙曲線的定義知:P的軌跡是以F1(5,0),F(xiàn)2(-5,0)為焦點(diǎn),以實(shí)軸長為8的雙曲線.所以c=5,a=4,b2=c2-a2=9,所以雙曲線的方程為:x216-y29=1故選B46.(幾何證明選講選做題)如圖,△ABC的外角平分線AD交外接圓于D,BD=4,則CD=______.答案:∵A、B、C、D共圓,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故為4.47.圓心既在直線x-y=0上,又在直線x+y-4=0上,且經(jīng)過原點(diǎn)的圓的方程是______.答案:∵圓心既在直線x-y=0上,又在直線x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圓心坐標(biāo)為(2,2),∵圓經(jīng)過原點(diǎn),∴半徑r=22,故所求圓的方程為(x-2)2+(y-2)2=8.48.一個多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A49.某公司招聘員工,經(jīng)過筆試確定面試對象人數(shù),面試對象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為:y=4x,1≤x≤102x+10,10<x≤1001.5x
,x>100其中x代表擬錄用人數(shù),y代表面試對象人數(shù).若應(yīng)聘的面試對象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x
,x>100=60,∴當(dāng)1≤x≤10時(shí),由4x=60得x=15?[1,10],不滿足題意;當(dāng)10<x≤100時(shí),由2x+10=60得x=25∈(10,100],滿足題意;當(dāng)x>100時(shí),由1.5x=60得x=40?(100,+∞),不滿足題意.∴該公司擬錄用人數(shù)為25.故選D.50.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c第2卷一.綜合題(共50題)1.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當(dāng)0<a<1時(shí)函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當(dāng)a>1時(shí)函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.2.平面向量的夾角為,則等于(
)
A.
B.3
C.7
D.79答案:A3.設(shè)m∈R,向量=(1,m).若||=2,則m等于()
A.1
B.
C.±1
D.±答案:D4.已知按向量平移得到,則
.答案:3解析:由平移公式可得解得.5.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點(diǎn),
(Ⅰ)求證:DM⊥EB;
(Ⅱ)設(shè)二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設(shè)平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22?12+02+
02=13,即cosβ=136.設(shè)隨機(jī)變量ζ~N(2,p),隨機(jī)變量η~N(3,p),若,則P(η≥1)=()
A.
B.
C.
D.答案:D7.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).8.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|
|n|=231×22+1+(23)2=27.故為27.9.寫出求1+2+3+4+5+6+…+100的一個算法.可運(yùn)用公式1+2+3+…+n=n(n+1)2直接計(jì)算.
第一步______;
第二步______;
第三步
輸出計(jì)算的結(jié)果.答案:由條件知構(gòu)成等差數(shù)列,從而前n項(xiàng)和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入計(jì)算S=n(n+1)2.故為:取n=100;計(jì)算S=n(n+1)2.10.若A,B,C是直線存在實(shí)數(shù)x使得,實(shí)數(shù)x為()
A.-1
B.0
C.
D.答案:A11.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C12.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()
A.a(chǎn)<b<c<d
B.a(chǎn)<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C13.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是()
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D14.若e1,e2是兩個不共線的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三點(diǎn)共線,則k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因?yàn)锳,B,D三點(diǎn)共線,所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故為:-415.設(shè)點(diǎn)P(,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()
A.3
B.5
C.
D.答案:D16.如圖,在直角坐標(biāo)系中,A,B,C三點(diǎn)在x軸上,原點(diǎn)O和點(diǎn)B分別是線段AB和AC的中點(diǎn),已知AO=m(m為常數(shù)),平面上的點(diǎn)P滿足PA+PB=6m.
(1)試求點(diǎn)P的軌跡C1的方程;
(2)若點(diǎn)(x,y)在曲線C1上,求證:點(diǎn)(x3,y22)一定在某圓C2上;
(3)過點(diǎn)C作直線l,與圓C2相交于M,N兩點(diǎn),若點(diǎn)N恰好是線段CM的中點(diǎn),試求直線l的方程.答案:(1)由題意可得點(diǎn)P的軌跡C1是以A,B為焦點(diǎn)的橢圓.…(2分)且半焦距長c=m,長半軸長a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(diǎn)(x,y)在曲線C1上,則x29m2+y28m2=1.設(shè)x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(diǎn)(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設(shè)M(x1,y1),則x12+y12=m2.…①因?yàn)辄c(diǎn)N恰好是線段CM的中點(diǎn),所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯(lián)立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說明理由,給1分)17.在平面直角坐標(biāo)中,h為坐標(biāo)原點(diǎn),設(shè)向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()A.
B.
C.
D.
答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故選A.18.直線kx-y+1=3k,當(dāng)k變動時(shí),所有直線都通過定點(diǎn)
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C19.點(diǎn)O是四邊形ABCD內(nèi)一點(diǎn),滿足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設(shè)BC中點(diǎn)為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點(diǎn)都在BC邊的中線上,且|AO|=2|OE|,所以O(shè)為△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.20.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()
(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;
(2)可以用多個數(shù)值來刻畫數(shù)據(jù)的離散程度;
(3)對于不同的數(shù)據(jù)集,其離散程度大時(shí),該數(shù)值應(yīng)越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C21.如果命題“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對應(yīng)的點(diǎn)都在曲線C上
C.不滿足方程f(x,y)=0的點(diǎn)(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C22.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)求弦AB的長度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)23.從5名男學(xué)生、3名女學(xué)生中選3人參加某項(xiàng)知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計(jì)數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時(shí),有C32C51=15種結(jié)果,當(dāng)包括兩男一女時(shí),有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.24.過點(diǎn)P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點(diǎn)P平分,該直線的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C25.現(xiàn)有含鹽7%的食鹽水為200g,需將它制成工業(yè)生產(chǎn)上需要的含鹽5%以上且在6%以下(不含5%和6%)的食鹽水,設(shè)需要加入4%的食鹽水xg,則x的取值范圍是(
)。答案:(100,400)26.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實(shí)數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時(shí),A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時(shí),A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.27.函數(shù)y=(43)x,x∈N+是()A.增函數(shù)B.減函數(shù)C.奇函數(shù)D.偶函數(shù)答案:由正整數(shù)指數(shù)函數(shù)不具有奇偶性,可排除C、D;因?yàn)楹瘮?shù)y=(43)x,x∈N+的底數(shù)43大于1,所以此函數(shù)是增函數(shù).故選A.28.設(shè)曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點(diǎn)A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點(diǎn),設(shè)是關(guān)于點(diǎn)A的對稱點(diǎn),則有,,代入曲線C的方程,得關(guān)于的方程,即可知點(diǎn)在曲線C1上.反過來,同樣可以證明,在曲線C1上的點(diǎn)關(guān)于點(diǎn)A的對稱點(diǎn)在曲線C上,因此,曲線C與C1關(guān)于點(diǎn)A對稱.29.如圖給出的是計(jì)算1+13+15+…+12013的值的一個程序框圖,圖中空白執(zhí)行框內(nèi)應(yīng)填入i=______.答案:∵該程序的功能是計(jì)算1+13+15+…+12013的值,最后一次進(jìn)入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應(yīng)該填的語句是:i=i+2.故為:i+2.30.已知直線l經(jīng)過點(diǎn)P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時(shí)與l1、l2的交點(diǎn)分別為A′(3,-4)或B′(3,-9),截得的線段AB的長|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過點(diǎn)P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.31.從一堆蘋果中任取5只,稱得它們的質(zhì)量為(單位:克):125124121123127,則該樣本標(biāo)準(zhǔn)差s=______(克)(用數(shù)字作答).答案:由題意得:樣本平均數(shù)x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.32.已知點(diǎn)P是拋物線y2=2x上的動點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點(diǎn)F(12,0),準(zhǔn)線x=-12,延長PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點(diǎn),可計(jì)算得P0(3,94),另一交點(diǎn)(-13,118)舍去.當(dāng)P重合于P0時(shí),|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.33.解下列關(guān)于x的不等式
(1)
(2)答案:(1)(2)原不等式的解集為解析:(1)
解:(2)
解:分析該題要設(shè)法去掉絕對值符號,可由去分類討論當(dāng)時(shí)原不等式等價(jià)于
故得不等式的解集為所以原不等式的解集為34.若不等式logax>sin2x(a>0,a≠1)對任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時(shí),函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過點(diǎn)(π4,1)時(shí),a=π4,然后它只能向右旋轉(zhuǎn),此時(shí)a在增大,但是不能大于1故選B.35.如果命題P:?∈{?},命題Q:??{?},那么下列結(jié)論不正確的是()A.“P或Q”為真B.“P且Q”為假C.“非P”為假D.“非Q”為假答案:命題P:?∈{?},命題Q:??{?},可直接看出命題Q,命題P都是正確的.故“P或Q”為真.“P且Q”為真.“非P”為假.“非Q”為假.故選B.36.如圖,圓O上一點(diǎn)C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1037.設(shè)S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當(dāng)n=2時(shí),n2=4故S(2)=12+13+14故選D38.函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],當(dāng)a變動時(shí),函數(shù)b=g(a)的圖象可以是()A.
B.
C.
D.
答案:根據(jù)選項(xiàng)可知a≤0a變動時(shí),函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],∴2|b|=16,b=4故選B.39.(文)函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是______.答案:f(x)=x+2x≥
22當(dāng)且僅當(dāng)x=2時(shí)取等號該函數(shù)在(0,2)上單調(diào)遞減,在(2,2]上單調(diào)遞增∴當(dāng)x=2時(shí)函數(shù)取最小值22,x趨近0時(shí),函數(shù)值趨近無窮大故函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是[22,+∞)故為:[22,+∞)40.已知0<a<1,loga(1-x)<logax則()
A.0<x<1
B.x<
C.0<x<
D.<x<1答案:C41.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實(shí)數(shù)λ等于()
A.
B.
C.
D.答案:D42.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機(jī)測得10對母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計(jì)算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計(jì)算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時(shí),可以估計(jì)女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時(shí),y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.43.某人從家乘車到單位,途中有3個交通崗?fù)ぃ僭O(shè)在各交通崗遇到紅燈的事件是相互獨(dú)立的,且概率都是0.4,則此人上班途中遇紅燈的次數(shù)的期望為()
A.0.4
B.1.2
C.0.43
D.0.6答案:B44.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏東30°方向航行2km.故選B.45.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.46.如圖,在四棱柱的上底面ABCD中,AB=DC,則下列向量相等的是()
A.AD與CB
B.OA與OC
C.AC與DB
D.DO與OB
答案:D47.兩不重合直線l1和l2的方向向量分別為答案:∵直線l1和l2的方向向量分別為48.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A49.下列函數(shù)中,定義域?yàn)椋?,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域?yàn)椋?,+∞),函數(shù)y=x的定義域?yàn)閇0,+∞),函數(shù)y=1x2的定義域?yàn)閧x|x≠0},函數(shù)y=12x的定義域?yàn)镽,故只有A中的函數(shù)滿足定義域?yàn)椋?,+∞),故選A.50.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0
(1)證明:1a是f(x)的一個根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點(diǎn),f(x)=0的兩個根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個根.(2)假設(shè)1a<c,又1a>0由0<x<c時(shí),f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個根不相等∴1a≠c,只有1a>c第3卷一.綜合題(共50題)1.橢圓的短軸長是2,一個焦點(diǎn)是(3,0),則橢圓的標(biāo)準(zhǔn)方程是______.答案:∵橢圓的一個焦點(diǎn)是(3,0),∴c=3,又∵短軸長是2,∴2b=2.b=1,∴a2=4∵焦點(diǎn)在x軸上,∴橢圓的標(biāo)準(zhǔn)方程是x24+y2=1故為x24+y2=12.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C3.如果雙曲線的焦距為6,兩條準(zhǔn)線間的距離為4,那么該雙曲線的離心率為()
A.
B.
C.
D.2答案:C4.若O(0,0),A(1,2)且OA′=2OA.則A′點(diǎn)坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.5.在空間直角坐標(biāo)系中,在Ox軸上的點(diǎn)P1的坐標(biāo)特點(diǎn)為
______,在Oy軸上的點(diǎn)P2的坐標(biāo)特點(diǎn)為
______,在Oz軸上的點(diǎn)P3的坐標(biāo)特點(diǎn)為
______,在xOy平面上的點(diǎn)P4的坐標(biāo)特點(diǎn)為
______,在yOz平面上的點(diǎn)P5的坐標(biāo)特點(diǎn)為
______,在xOz平面上的點(diǎn)P6的坐標(biāo)特點(diǎn)為
______.答案:由空間坐標(biāo)系的定義知;Ox軸上的點(diǎn)P1的坐標(biāo)特點(diǎn)為(x,0,0),在Oy軸上的點(diǎn)P2的坐標(biāo)特點(diǎn)為(0,y,0),在Oz軸上的點(diǎn)P3的坐標(biāo)特點(diǎn)為(0,0,z),在xOy平面上的點(diǎn)P4的坐標(biāo)特點(diǎn)為(x,y,0),在yOz平面上的點(diǎn)P5的坐標(biāo)特點(diǎn)為(0,y,z),在xOz平面上的點(diǎn)P6的坐標(biāo)特點(diǎn)為(x,0,z).故應(yīng)依次為(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).6.設(shè)a,b,c是三個不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個基底,則可以選擇的向量為______.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)7.中心在原點(diǎn),焦點(diǎn)在橫軸上,長軸長為4,短軸長為2,則橢圓方程是(
)
A.
B.
C.
D.答案:B8.如果執(zhí)行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C9.欲對某商場作一簡要審計(jì),通過檢查發(fā)票及銷售記錄的2%來快速估計(jì)每月的銷售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機(jī)抽一張,如15號,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.這種抽取樣本的方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個體比較多,抽樣時(shí)某本50張的發(fā)票存根中隨機(jī)抽一張,如15號,這是系統(tǒng)抽樣中的分組,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.故選B.10.選修4-2:矩陣與變換
已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.11.已知△ABC,A(-1,0),B(3,0),C(2,1),對它先作關(guān)于x軸的反射變換,再將所得圖形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°.
(1)分別求兩次變換所對應(yīng)的矩陣M1,M2;
(2)求△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′的面積.答案:(1)關(guān)于x軸的反射變換M1=100-1,繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°的變換M2=0-110.(4分)(2)∵M(jìn)2?M1=0-110100-1=0110,(6分)△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)12.已知f(x)=x2+4x+8,則f(3)=______.答案:f(3)=32+4×3+8=29,故為:29.13.對于函數(shù)f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”現(xiàn)有四個函數(shù):
①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“穩(wěn)定區(qū)間”的函數(shù)有()A.①②B.②③C.③④D.②④答案:①對于函數(shù)f(x)=ex若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有ea=a,eb=b,即方程ex=x有兩個解,即y=ex和y=x的圖象有兩個交點(diǎn),這與即y=ex和y=x的圖象沒有公共點(diǎn)相矛盾,故①不存在“穩(wěn)定區(qū)間”.②對于f(x)=x3存在“穩(wěn)定區(qū)間”,如x∈[0,1]時(shí),f(x)=x3∈[0,1].③對于f(x)=sinπ2x,存在“穩(wěn)定區(qū)間”,如x∈[0,1]時(shí),f(x)=sinπ2x∈[0,1].④對于f(x)=lnx,若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有l(wèi)na=a,且lnb=b,即方程lnx=x有兩個解,即y=lnx
和y=x的圖象有兩個交點(diǎn),這與y=lnx和y=x的圖象沒有公共點(diǎn)相矛盾,故④不存在“穩(wěn)定區(qū)間”.故選B.14.已知拋物線C1:x2=2py(p>0)上縱坐標(biāo)為p的點(diǎn)到其焦點(diǎn)的距離為3.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)過點(diǎn)P(0,-2)的直線交拋物線C1于A,B兩點(diǎn),設(shè)拋物線C1在點(diǎn)A,B處的切線交于點(diǎn)M,
(ⅰ)求點(diǎn)M的軌跡C2的方程;
(ⅱ)若點(diǎn)Q為(?。┲星€C2上的動點(diǎn),當(dāng)直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時(shí),試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.
…(5分)(Ⅱ)(ⅰ)設(shè)過點(diǎn)P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點(diǎn)A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點(diǎn)M的軌跡C2的方程為y=2
(x<-22或x>22).…(10分)(ⅱ)設(shè)Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.
…(15分)15.不等式的解集
.答案:;解析:略16.在空間中,有如下命題:
①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個數(shù)為()個.
A.0
B.1
C.2
D.3答案:B17.設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,直線AF的方程為y=-3(x-2),所以點(diǎn)A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.18.若4名學(xué)生和3名教師站在一排照相,則其中恰好有2名教師相鄰的站法有______種.(用數(shù)字作答)答案:4名學(xué)生和3名教師站在一排照相,則其中恰好有2名教師相鄰,所以第一步應(yīng)先取兩個老師且綁定有C23×A22=6種方法,第二步將四名學(xué)生全排列,共有4!=24種方法,第三步將綁定的兩位老師與剩下的一位老師看作兩個元素,插入四個學(xué)生隔開的五個空中,共有A25=20種方法故總的站法有6×24×20=2880種故為288019.用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D20.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為()
A.內(nèi)切
B.相交
C.外切
D.相離答案:B21.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(biāo)(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A22.兩個樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動()
A.大
B.相等
C.小
D.無法確定答案:A23.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.?dāng)?shù)學(xué)
C.外語
D.都一樣答案:B24.(文科做)
f(x)=1x
(x<0)(13)x(x≥0),則不等式f(x)≥13的解集是______.答案:x<0時(shí),f(x)=1x≥13,解得x∈?;x≥0時(shí),f(x)=(13)x≥13,解得x≤1,故0≤x≤1.綜上所述,不等式f(x)≥13的解集為{x|0≤x≤1}.故為:{x|0≤x≤1}.25.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(
)
A.2
B.1
C.0
D.-1答案:D26.用系統(tǒng)抽樣法要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生隨機(jī)地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126,則第1組中用抽簽的方法確定的號碼是______.答案:不妨設(shè)在第1組中隨機(jī)抽到的號碼為x,則在第16組中應(yīng)抽出的號碼為120+x.設(shè)第1組抽出的號碼為x,則第16組應(yīng)抽出的號碼是8×15+x=126,∴x=6.故為:6.27.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當(dāng)x1>x2>π時(shí),使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當(dāng)x1>x2>π時(shí),使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.28.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因?yàn)橹本€的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時(shí),對應(yīng)的斜率k=tan30°=33故選:C.29.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點(diǎn),則∠AED的大小為()
A.45°
B.30°
C.60°
D.90°答案:D30.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D31.將一枚骰子連續(xù)拋擲600次,請你估計(jì)擲出的點(diǎn)數(shù)大于2的大約是______次.答案:一顆骰子是均勻的,當(dāng)拋這顆骰子時(shí),出現(xiàn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- “善操作、會落實(shí)、能創(chuàng)新”-領(lǐng)導(dǎo)干部執(zhí)行力提升
- 江蘇省鹽城市、南京市2024-2025學(xué)年度第一學(xué)期期末調(diào)研測試高三政治試題(含答案)
- 海南省儋州市2024-2025學(xué)年九年級上學(xué)期期末道德與法治試題(含答案)
- 第13課 五四運(yùn)動(分層作業(yè))(解析版)
- 燃?xì)夥?wù)質(zhì)量承諾書模板
- 電動工具操作安全意識
- 煙草物流配送:天價(jià)煙管理辦法
- 信息技術(shù)票據(jù)處理流程
- 航運(yùn)業(yè)務(wù)員聘用合同
- 企業(yè)并購招投標(biāo)委托協(xié)議
- 西門子s7200格式s7200硬件手冊
- 輕型貨車設(shè)計(jì)
- 實(shí)際問題與反比例函數(shù)(1)
- 城市軌道交通工程項(xiàng)目質(zhì)量安全控制要點(diǎn)
- 交通標(biāo)志結(jié)構(gòu)計(jì)算書
- 廠房結(jié)構(gòu)設(shè)計(jì)原理
- 個人獨(dú)資公司章程范本-
- 中國核電標(biāo)準(zhǔn)化組織方式及工作方案
- 淺談循環(huán)流化床鍋爐與煤粉爐比較探究
- 斷路器試驗(yàn)介紹
- 云南省腫瘤醫(yī)院.doc
評論
0/150
提交評論