版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無(wú)數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行2.已知函數(shù)滿足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設(shè)集合,,若,則()A. B. C. D.4.已知集合,則集合的非空子集個(gè)數(shù)是()A.2 B.3 C.7 D.85.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.6.已知函數(shù),若函數(shù)的所有零點(diǎn)依次記為,且,則()A. B. C. D.7.設(shè)是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,,則()A. B.C. D.8.函數(shù)fxA. B.C. D.9.已知等差數(shù)列的公差為,前項(xiàng)和為,,,為某三角形的三邊長(zhǎng),且該三角形有一個(gè)內(nèi)角為,若對(duì)任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.310.已知向量,,則向量與的夾角為()A. B. C. D.11.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]12.已知定義在R上的函數(shù)(m為實(shí)數(shù))為偶函數(shù),記,,則a,b,c的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.集合,,則_____.14.有2名老師和3名同學(xué),將他們隨機(jī)地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則對(duì)應(yīng)的排法有______種;______;15.過(guò)直線上一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,則的最小值是______.16.在三棱錐中,,,兩兩垂直且,點(diǎn)為的外接球上任意一點(diǎn),則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓:()的左、右焦點(diǎn)分別為和,右頂點(diǎn)為,且,短軸長(zhǎng)為.(1)求橢圓的方程;(2)若過(guò)點(diǎn)作垂直軸的直線,點(diǎn)為直線上縱坐標(biāo)不為零的任意一點(diǎn),過(guò)作的垂線交橢圓于點(diǎn)和,當(dāng)時(shí),求此時(shí)四邊形的面積.18.(12分)如圖,在中,,的角平分線與交于點(diǎn),.(Ⅰ)求;(Ⅱ)求的面積.19.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.20.(12分)某機(jī)構(gòu)組織的家庭教育活動(dòng)上有一個(gè)游戲,每次由一個(gè)小孩與其一位家長(zhǎng)參與,測(cè)試家長(zhǎng)對(duì)小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對(duì)其排序,然后由家長(zhǎng)猜測(cè)小孩的排序結(jié)果.設(shè)小孩對(duì)四種食物排除的序號(hào)依次為xAxBxCxD,家長(zhǎng)猜測(cè)的序號(hào)依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個(gè)數(shù)字的一種排列.定義隨機(jī)變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來(lái)衡量家長(zhǎng)對(duì)小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解.(?。┣笏麄?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率;(ⅱ)求X的分布列(簡(jiǎn)要說(shuō)明方法,不用寫出詳細(xì)計(jì)算過(guò)程);(2)若有一組小孩和家長(zhǎng)進(jìn)行來(lái)三輪游戲,三輪的結(jié)果都滿足X<4,請(qǐng)判斷這位家長(zhǎng)對(duì)小孩飲食習(xí)慣是否了解,說(shuō)明理由.21.(12分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足>1,求實(shí)數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.22.(10分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.內(nèi)有無(wú)數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點(diǎn)睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.2.B【解析】
結(jié)合函數(shù)的對(duì)應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對(duì)應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.3.A【解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.4.C【解析】
先確定集合中元素,可得非空子集個(gè)數(shù).【詳解】由題意,共3個(gè)元素,其子集個(gè)數(shù)為,非空子集有7個(gè).故選:C.【點(diǎn)睛】本題考查集合的概念,考查子集的概念,含有個(gè)元素的集合其子集個(gè)數(shù)為,非空子集有個(gè).5.A【解析】
推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.6.C【解析】
令,求出在的對(duì)稱軸,由三角函數(shù)的對(duì)稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對(duì)稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對(duì)稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點(diǎn)睛】本題考查了三角函數(shù)的對(duì)稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點(diǎn)是將所求的式子拆分為的形式.7.C【解析】
根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)的運(yùn)算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.8.A【解析】
由f12=e-14>0排除選項(xiàng)D;【詳解】由f12=e-14>0,可排除選項(xiàng)D,f-1=-e【點(diǎn)睛】本題通過(guò)對(duì)多個(gè)圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無(wú)路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及x→09.C【解析】
若對(duì)任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【詳解】由已知,,又三角形有一個(gè)內(nèi)角為,所以,,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的最值問題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.10.C【解析】
求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時(shí),通常代入公式進(jìn)行計(jì)算.11.D【解析】
由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.12.B【解析】
根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調(diào)性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調(diào)遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對(duì)于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大?。⑻羁疹}:本題共4小題,每小題5分,共20分。13.【解析】
分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【詳解】因?yàn)楸硎緸槠鏀?shù),故.故答案為:【點(diǎn)睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡(jiǎn)單題.14.36;1.【解析】
的可能取值為0,1,2,3,對(duì)應(yīng)的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學(xué),將他們隨機(jī)地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則的可能取值為0,1,2,3,對(duì)應(yīng)的排法有:.∴對(duì)應(yīng)的排法有36種;,,,,∴故答案為:36;1.【點(diǎn)睛】本題考查了排列、組合的應(yīng)用,離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望,屬于中檔題.15.【解析】
由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進(jìn)而表示,由圖像觀察可知進(jìn)而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因?yàn)榱睿瑒t,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:【點(diǎn)睛】本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問題,應(yīng)用函數(shù)形式表示所求式子,進(jìn)而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.16.【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運(yùn)算,將問題轉(zhuǎn)化為求球體表面一點(diǎn)到外心距離最大的問題,即可求得結(jié)果.【詳解】因?yàn)閮蓛纱怪鼻?,故三棱錐的外接球就是對(duì)應(yīng)棱長(zhǎng)為2的正方體的外接球.且外接球的球心為正方體的體對(duì)角線的中點(diǎn),如下圖所示:容易知外接球半徑為.設(shè)線段的中點(diǎn)為,故可得,故當(dāng)取得最大值時(shí),取得最大值.而當(dāng)在同一個(gè)大圓上,且,點(diǎn)與線段在球心的異側(cè)時(shí),取得最大值,如圖所示:此時(shí),故答案為:.【點(diǎn)睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運(yùn)算以及數(shù)量積運(yùn)算,屬綜合性困難題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】
(1)依題意可得,解方程組即可求出橢圓的方程;(2)設(shè),則,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去,設(shè),,列出韋達(dá)定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點(diǎn)到直線的距離得到,由即可得解;【詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設(shè),∴.∵,∴,∴設(shè)直線的方程為,∴,∴,顯然恒成立.設(shè),,則,,∴.∴,∴,∴解得,解得,∴,,∴.∵此時(shí)直線的方程為,,∴點(diǎn)到直線的距離為,∴,即此時(shí)四邊形的面積為.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),直線與橢圓的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.18.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進(jìn)而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.19.(1)詳見解析;(2).【解析】
(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點(diǎn),,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中線面平行關(guān)系的證明、空間向量法求解二面角的問題;關(guān)鍵是能夠熟練掌握二面角的向量求法,易錯(cuò)點(diǎn)是求得法向量夾角余弦值后,未根據(jù)圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號(hào)出現(xiàn)錯(cuò)誤.20.(1)(?。áⅲ┓植急硪娊馕?;(2)理由見解析【解析】
(1)(i)若家長(zhǎng)對(duì)小孩子的飲食習(xí)慣完全不了解,則家長(zhǎng)對(duì)小孩的排序是隨意猜測(cè)的,家長(zhǎng)的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率.
(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長(zhǎng)的排序一共有24種情況,由此能求出X的分布列.
(2)假設(shè)家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為,這個(gè)結(jié)果發(fā)生的可能性很小,從而這位家長(zhǎng)對(duì)小孩飲食習(xí)慣比較了解.【詳解】(1)(i)若家長(zhǎng)對(duì)小孩子的飲食習(xí)慣完全不了解,則家長(zhǎng)對(duì)小孩的排序是隨意猜測(cè)的,先考慮小孩的排序?yàn)閤A,xB,xC,xD為1234的情況,家長(zhǎng)的排序有=24種等可能結(jié)果,其中滿足“家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同的概率P=.基小孩對(duì)四種食物的排序是其他情況,只需將角標(biāo)A,B,C,D按照小孩的順序調(diào)整即可,假設(shè)小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實(shí)這樣處理后與第一種情況的計(jì)算結(jié)果是一致的,∴他們?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率為.(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長(zhǎng)的排序一共有24種情況,列出所有情況,分別計(jì)算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長(zhǎng)對(duì)小孩的飲食習(xí)慣比較了解.理由如下:假設(shè)家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為()3=,這個(gè)結(jié)果發(fā)生的可能性很小,∴這位家長(zhǎng)對(duì)小孩飲食習(xí)慣比較了解.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.21.(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】
(1)是研究在動(dòng)區(qū)間上的最值問題,這類問題的研究方法就是通過(guò)討論函數(shù)的極值點(diǎn)與所研究的區(qū)間的大小關(guān)系來(lái)進(jìn)行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構(gòu)造函數(shù)F(x)=h(x)-x在(0,+∞)上單調(diào)遞增,進(jìn)而等價(jià)于F′(x)≥0在(0,+∞)上恒成立來(lái)加以研究.(3)用處理恒成立問題來(lái)處理有解問題,先分離變量轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)的最值,得到a≤,再利用導(dǎo)數(shù)求函數(shù)M(x)=的最大值,這要用到二次求導(dǎo),才可確定函數(shù)單調(diào)性,進(jìn)而確定函數(shù)最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當(dāng)t≥1時(shí),f(x)在[t,t+1]上單調(diào)遞增,f(x)的最小值為f(t)=t-lnt;當(dāng)0<t<1時(shí),f(x)在區(qū)間(t,1)上為減函數(shù),在區(qū)間(1,t+1)上為增函數(shù),f(x)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省泰州市姜堰區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期期中考試地理試題(含答案)
- 2024年度云南省高校教師資格證之高等教育法規(guī)綜合檢測(cè)試卷A卷含答案
- 安徽省亳州市黌學(xué)英才中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期9月月考地理試卷(含答案)
- 數(shù)據(jù)中心項(xiàng)目立項(xiàng)報(bào)告
- 阜陽(yáng)師范大學(xué)《國(guó)際貿(mào)易理論與實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘇教版小學(xué)科學(xué)一年級(jí)下冊(cè)全冊(cè)教案(新課標(biāo))講解學(xué)習(xí)
- 福建師范大學(xué)《語(yǔ)言與統(tǒng)計(jì)學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 骨科實(shí)習(xí)生出科考試試題及答案
- 2024年二級(jí)建造師-法規(guī)-速通寶典
- 福建師范大學(xué)《土壤地理學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- JT∕T 795-2023 事故汽車修復(fù)技術(shù)規(guī)范
- 2024年廣西職業(yè)院校技能大賽高職組《英語(yǔ)口語(yǔ)》賽項(xiàng)賽題(Presentation)
- 作文稿紙A4打印模板
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)項(xiàng)目計(jì)劃書醫(yī)療
- 歐洲文明與世界遺產(chǎn)智慧樹知到期末考試答案2024年
- 山東省淄博市臨淄區(qū)2022-2023學(xué)年六年級(jí)上學(xué)期期中英語(yǔ)試卷
- 23年11月14日江蘇省南京鼓樓八上語(yǔ)文期中【學(xué)生】
- 中醫(yī)合理膳食知識(shí)講座
- (高清版)TDT 1033-2012 高標(biāo)準(zhǔn)基本農(nóng)田建設(shè)標(biāo)準(zhǔn)
- 2024年中核武漢核電運(yùn)行技術(shù)股份有限公司招聘筆試參考題庫(kù)含答案解析
- 周圍神經(jīng)損傷(InjuryofPeripheralNerve)
評(píng)論
0/150
提交評(píng)論