2023年青島職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年青島職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年青島職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年青島職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年青島職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年青島職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.曲線的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()

A.(x-1)2(y-1)=1

B.

C.

D.答案:B2.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負(fù)根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.3.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點(diǎn)F(12,0),準(zhǔn)線x=-12,延長(zhǎng)PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長(zhǎng)大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點(diǎn),可計(jì)算得P0(3,94),另一交點(diǎn)(-13,118)舍去.當(dāng)P重合于P0時(shí),|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.4.圓臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,則圓臺(tái)較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因?yàn)閳A臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A5.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D6.圓x2+y2=1在矩陣10012對(duì)應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣A=10012對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.7.對(duì)于直線l的傾斜角α與斜率k,下列說法錯(cuò)誤的是()

A.α的取值范圍是[0°,180°)

B.k的取值范圍是R

C.k=tanα

D.當(dāng)α∈(90°,180°)時(shí),α越大k越大答案:C8.直線l過拋物線y2=2px(p>0)的焦點(diǎn),且與拋物線交于A、B兩點(diǎn),若線段AB的長(zhǎng)是8,AB的中點(diǎn)到y(tǒng)軸的距離是2,則此拋物線方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:設(shè)A(x1,y1),B(x2,y2),根據(jù)拋物線定義,x1+x2+p=8,∵AB的中點(diǎn)到y(tǒng)軸的距離是2,∴x1+x22=2,∴p=4;∴拋物線方程為y2=8x故選B9.“a=2”是“直線ax+2y=0平行于直線x+y=1”的(

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C10.若點(diǎn)A(1,2,3),B(-3,2,7),且AC+BC=0,則點(diǎn)C的坐標(biāo)為______.答案:設(shè)C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)11.某校為提高教學(xué)質(zhì)量進(jìn)行教改實(shí)驗(yàn),設(shè)有試驗(yàn)班和對(duì)照班.經(jīng)過兩個(gè)月的教學(xué)試驗(yàn),進(jìn)行了一次檢測(cè),試驗(yàn)班與對(duì)照班成績(jī)統(tǒng)計(jì)如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.

80及80分以下80分以上合計(jì)試驗(yàn)班321850對(duì)照班12m50合計(jì)4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.12.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.13.在某項(xiàng)體育比賽中,七位裁判為一選手打出分?jǐn)?shù)的莖葉圖如圖,去掉一個(gè)最高分和一個(gè)攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評(píng)委為該選手打出的7個(gè)分?jǐn)?shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個(gè)最低分89,去掉一個(gè)最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.14.在同一坐標(biāo)系下,函數(shù)y=ax,y=bx,y=cx,y=dx的圖象如圖,則a、b、c、d、1之間從小到大的順序是______.答案:作直線x=1與各圖象相交,交點(diǎn)的縱坐標(biāo)即為底數(shù),故從下到上依次增大.所以b<a<1<d<c故為:b,a,1,d,c15.某校對(duì)文明班的評(píng)選設(shè)計(jì)了a,b,c,d,e五個(gè)方面的多元評(píng)價(jià)指標(biāo),并通過經(jīng)驗(yàn)公式樣S=ab+cd+1e來計(jì)算各班的綜合得分,S的值越高則評(píng)價(jià)效果越好,若某班在自測(cè)過程中各項(xiàng)指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個(gè)指標(biāo)的值增加1個(gè)單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時(shí),S的值越大,而在分子都增加1的前提下,分母越小時(shí),S的值增長(zhǎng)越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個(gè)單位會(huì)使得S的值增加最多.故選C.16.設(shè)U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M(jìn)={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}17.執(zhí)行如圖所示的程序框圖,輸出的M的值為()

A.17

B.53

C.161

D.485

答案:C18.圓C1:x2+y2-6x+6y-48=0與圓C2:x2+y2+4x-8y-44=0公切線的條數(shù)是()

A.0條

B.1條

C.2條

D.3條答案:C19.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A20.以原點(diǎn)為圓心,且截直線3x+4y+15=0所得弦長(zhǎng)為8的圓的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦長(zhǎng)為8,所以半徑是5所求圓的方程是:x2+y2=25故選D.21.若A(-2,3),B(3,-2),C(,m)三點(diǎn)共線

則m的值為()

A.

B.-

C.-2

D.2答案:A22.在y=2x,y=log2x,y=x2,y=cosx這四個(gè)函數(shù)中,當(dāng)0<x1<x2<1時(shí),使f(x1+x22)>f(x1)+f(x2)2恒成立的函數(shù)的個(gè)數(shù)是()A.0B.1C.2D.3答案:當(dāng)0<x1<x2<1時(shí),使f(x1+x22)>f(x1)+f(x2)2恒成立,說明函數(shù)一個(gè)遞增的越來越慢的函數(shù)或者是一個(gè)遞減的越來越快的函數(shù)或是一個(gè)先遞增得越來越慢,再遞減得越來越快的函數(shù)考查四個(gè)函數(shù)y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是遞增得越來越慢型,函數(shù)y=cosx在(0,1)是遞減得越來越快型,y=2x,y=x2,這兩個(gè)函數(shù)都是遞增得越來越快型綜上分析知,滿足條件的函數(shù)有兩個(gè)故選C23.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,則k的值為(

)A.

233B.7C.-

115D.-

233答案:考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系.24.平面向量a與b的夾角為60°,a=(2,0),|b|=1

則|a+2b|=______.答案:∵平面向量a與b的夾角為60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故為:23.25.設(shè)P是邊長(zhǎng)為23的正△ABC內(nèi)的一點(diǎn),x,y,z是P到三角形三邊的距離,則x+y+z的最大值為______.答案:正三角形的邊長(zhǎng)為a=23,可得它的高等于32a=3∵P是正三角形內(nèi)部一點(diǎn)∴點(diǎn)P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當(dāng)且僅當(dāng)x=y=z=1時(shí),x+y+z的最大值為3故為:326.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運(yùn)行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因?yàn)閗=5,結(jié)束循環(huán),輸出結(jié)果S=2+4+6+8=20.故為:20.27.一個(gè)試驗(yàn)要求的溫度在69℃~90℃之間,用分?jǐn)?shù)法安排試驗(yàn)進(jìn)行優(yōu)選,則第一個(gè)試點(diǎn)安排在(

)。(取整數(shù)值)答案:82°28.給出以下變量①吸煙,②性別,③宗教信仰,④國(guó)籍,其中屬于分類變量的有______.答案:①因?yàn)槲鼰煵皇欠诸愖兞?,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④?9.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°30.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為______.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).31.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.32.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時(shí),原不等式等價(jià)于33.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進(jìn)行排列,有A22種排法,再把A、B看成一個(gè)元素,和E進(jìn)行排列,有A22種排法,最后再把C、D插入進(jìn)去,有A23種排法,根據(jù)分步計(jì)數(shù)原理可得A22A22A23=24種排法.故為:2434.直線y=2x+1的參數(shù)方程是()

A.(t為參數(shù))

B.(t為參數(shù))

C.(t為參數(shù))

D.(θ為參數(shù))

答案:B35.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長(zhǎng)線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長(zhǎng)為2和4,λ+μ=2+4=6.故為6.36.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長(zhǎng)等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個(gè)法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個(gè)法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3337.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標(biāo)方程;

(2)當(dāng)0≤t<π2及π≤t<3π2時(shí),各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標(biāo)普通方程為x2-y24=1.(2)當(dāng)0≤t≤π2時(shí),x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點(diǎn));當(dāng)0≤t≤3π2時(shí),x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點(diǎn)).38.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點(diǎn),則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點(diǎn),∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:439.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.40.將某班的60名學(xué)生編號(hào)為:01,02,…,60,采用系統(tǒng)抽樣方法抽取一個(gè)容量為5的樣本,且隨機(jī)抽得的一個(gè)號(hào)碼為04,則剩下的四個(gè)號(hào)碼依次是______.答案:用系統(tǒng)抽樣抽出的5個(gè)學(xué)生的號(hào)碼從小到大成等差數(shù)列,隨機(jī)抽得的一個(gè)號(hào)碼為04則剩下的四個(gè)號(hào)碼依次是16、28、40、52.故為:16、28、40、5241.設(shè)隨機(jī)變量X~N(μ,δ2),且p(X≤c)=p(X>c),則c的值()

A.0

B.1

C.μ

D.μ答案:C42.若數(shù)列{an}是等差數(shù)列,對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,對(duì)于dn>0,則dn=______時(shí),數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時(shí),我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)dn=nC1C2C3Cn時(shí),數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn43.函數(shù)y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因?yàn)楹瘮?shù)y=5x,x∈N+的定義域?yàn)檎麛?shù)集N+,所以當(dāng)自變量x取1,2,3,4,…時(shí),其相應(yīng)的函數(shù)值y依次是5,52,53,54,….因此,函數(shù)y=5x,x∈N+的值域是{5,52,53,54,…}.故選D.44.已知圓錐的母線長(zhǎng)與底面半徑長(zhǎng)之比為3:1,一個(gè)正方體有四個(gè)頂點(diǎn)在圓錐的底面內(nèi),另外的四個(gè)頂點(diǎn)在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D45.國(guó)旗上的正五角星的每一個(gè)頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.46.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為23,科目B每次考試成績(jī)合格的概率均為12.假設(shè)各次考試成績(jī)合格與否均互不影響.

(Ⅰ)求他不需要補(bǔ)考就可獲得證書的概率;

(Ⅱ)在這項(xiàng)考試過程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.47.在下面的圖示中,結(jié)構(gòu)圖是()

A.

B.

C.

D.

答案:B48.方程4x-3×2x+2=0的根的個(gè)數(shù)是(

A.0

B.1

C.2

D.3答案:C49.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標(biāo)系內(nèi)的圖象是()A.

B.

C.

D.

答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點(diǎn)為(0,b)當(dāng)0<b<1時(shí),函數(shù)y=ax+b與y軸的交點(diǎn)在原點(diǎn)和(0,1)點(diǎn)之間,y=logbx為減函數(shù),D圖滿足要求;當(dāng)b>1時(shí),函數(shù)y=ax+b與y軸的交點(diǎn)在(0,1)點(diǎn)上方,y=logbx為增函數(shù),不存在滿足條件的圖象;故選D50.設(shè)拋物線C:y2=3px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為()

A.y2=4x或y2=8x

B.y2=2x或y2=8x

C.y2=4x或y2=16x

D.y2=2x或y2=16x答案:C第2卷一.綜合題(共50題)1.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()

A.

B.2

C.4

D.12答案:B2.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本、用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組(1~5號(hào),6~10號(hào),…,196~200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是______.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取______人.答案:∵將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組,由分組可知,抽號(hào)的間隔為5,∵第5組抽出的號(hào)碼為22,∴第6組抽出的號(hào)碼為27,第7組抽出的號(hào)碼為32,第8組抽出的號(hào)碼為37.40歲以下的年齡段的職工數(shù)為200×0.5=100,則應(yīng)抽取的人數(shù)為40200×100=20(人).故為:37;203.

如圖梯形A1B1C1D1是一平面圖形ABCD的斜二側(cè)直觀圖,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,則四邊形ABCD的面積是()

A.10

B.5

C.2

D.10

答案:B4.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____5.算法框圖中表示判斷的是()A.

B.

C.

D.

答案:∵在算法框圖中,表示判斷的是菱形,故選B.6.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因?yàn)锳C、BC的長(zhǎng)分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽R(shí)t△BCA,∴BD=165,故為:1657.雙曲線的中心是原點(diǎn)O,它的虛軸長(zhǎng)為26,右焦點(diǎn)為F(c,0)(c>0),直線l:x=a2c與x軸交于點(diǎn)A,且|OF|=3|OA|.過點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn).

(Ⅰ)求雙曲線的方程;

(Ⅱ)若AP?AQ=0,求直線PQ的方程.答案:解.(Ⅰ)由題意,設(shè)曲線的方程為x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以雙曲線的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(xiàn)(3,0),當(dāng)直線PQ與x軸垂直時(shí),PQ方程為x=3.此時(shí),AP?AQ≠0,應(yīng)舍去.當(dāng)直線PQ與x軸不垂直時(shí),設(shè)直線PQ的方程為y=k(x-3).由方程組x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于過點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)設(shè)P(x1,y1),Q(x2,y2),則x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直線PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP?AQ=0,∴(x1-1,y1)?(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22滿足(*)∴直線PQ的方程為x-2y-3=0或x+2y-3=08.有一個(gè)質(zhì)地均勻的正四面體,它的四個(gè)面上分別標(biāo)有1,2,3,4這四個(gè)數(shù)字.現(xiàn)將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數(shù)字和為S,則“S恰好為4”的概率為______.答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結(jié)果,滿足條件的事件是三次在正四面體底面的數(shù)字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結(jié)果,根據(jù)古典概型概率公式得到P=364,故為:364.9.在空間直角坐標(biāo)系O-xyz中,點(diǎn)P(4,3,7)關(guān)于坐標(biāo)平面yOz的對(duì)稱點(diǎn)的坐標(biāo)為______.答案:設(shè)所求對(duì)稱點(diǎn)為P'(x,y,z)∵關(guān)于坐標(biāo)平面yOz的對(duì)稱的兩個(gè)點(diǎn),它們的縱坐標(biāo)、豎坐標(biāo)相等,而橫坐標(biāo)互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標(biāo)平面yOz的對(duì)稱點(diǎn)的坐標(biāo)為P'(-4,3,7)故為:(-4,3,7)10.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長(zhǎng)為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B11.已知,求證:答案:證明略解析:∵

∴①

又∵②

③由①②③得

∴,又不等式①、②、③中等號(hào)成立的條件分別為,,故不能同時(shí)成立,從而.12.在曲線(t為參數(shù))上的點(diǎn)是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A13.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點(diǎn)坐標(biāo)為______.答案:在平面直角坐標(biāo)系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2

+y2=2

可得x=1y=1,故曲線C1與C2的交點(diǎn)坐標(biāo)為(1,1),故為(1,1).14.已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為

______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.15.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當(dāng)a>1時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當(dāng)1>a>0時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得

a=12.綜上,a的值為12或32故選C.16.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()

A.

B.

C.2

D.答案:B17.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則使得這個(gè)四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點(diǎn)B(2,4),與y軸的交點(diǎn)C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(diǎn)(2,4),與x軸的交點(diǎn)A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時(shí),所求四邊形的面積最小,故為18.18.設(shè)橢圓=1和x軸正方向的交點(diǎn)為A,和y軸的正方向的交點(diǎn)為B,P為第一象限內(nèi)橢圓上的點(diǎn),使四邊形OAPB面積最大(O為原點(diǎn)),那么四邊形OAPB面積最大值為()

A.a(chǎn)b

B.ab

C.a(chǎn)b

D.2ab答案:B19.在樣本的頻率分布直方圖中,共有11個(gè)小長(zhǎng)方形,若中間一個(gè)長(zhǎng)方形的面積等于其他十個(gè)小長(zhǎng)方形面積的和的14,且樣本容量是160,則中間一組的頻數(shù)為()A.32B.0.2C.40D.0.25答案:設(shè)間一個(gè)長(zhǎng)方形的面積S則其他十個(gè)小長(zhǎng)方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數(shù)為160×0.2=32故選A20.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.當(dāng)且僅當(dāng)x=2yx+2y=1時(shí),即x=12,y=14時(shí),取等號(hào).故為:18.21.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,即:x2+y2+z2的最小值為114.故為:11422.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實(shí)數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時(shí),即m=2或m=3m≠0且m≠3?m=2時(shí)復(fù)數(shù)z為純虛數(shù).故為:2.23.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x524.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個(gè)程序,但有幾處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框圖如左圖所示.或者,如右圖所示:(2)①DO應(yīng)改為WHILE;

②PRINT

n+1

應(yīng)改為PRINT

n;

③S=1應(yīng)改為S=0.25.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.26.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點(diǎn)指向遠(yuǎn)處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°27.已知按向量平移得到,則

.答案:3解析:由平移公式可得解得.28.若關(guān)于x的一元二次實(shí)系數(shù)方程x2+px+q=0有一個(gè)根為1+i(i是虛數(shù)單位),則p+q的值是()

A.-1

B.0

C.2

D.-2答案:B29.一個(gè)水平放置的平面圖形,其斜二測(cè)直觀圖是一個(gè)等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實(shí)際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+230.直角△PIB中,∠PBO=90°,以O(shè)為圓心、OB為半徑作圓弧交OP于A點(diǎn).若弧AB等分△POB的面積,且∠AOB=α弧度,則(

A.tanα=α

B.tan=2α

C.sinα=2cosα

D.2sin=cosα答案:B31.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時(shí),猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時(shí),fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對(duì)n=K+1時(shí),猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對(duì)一切n∈N*都成立.32.已知a>0,且a≠1,解關(guān)于x的不等式:

答案:①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<0解析:原不等式等價(jià)于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<033.一個(gè)算法的流程圖如圖所示,則輸出的S值為______.答案:根據(jù)程序框圖,題意為求:s=2+4+6+8,計(jì)算得:s=20,故為:20.34.如圖,PA,PB切⊙O于

A,B兩點(diǎn),AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因?yàn)榇怪薄螪CB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°35.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時(shí),由n=k(k>1)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C36.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.37.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C38.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對(duì)值都小于1.用反證法證明時(shí)可假設(shè)方程有一根x1的絕對(duì)值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()

A.(1)的假設(shè)錯(cuò)誤,(2)的假設(shè)正確

B.(1)與(2)的假設(shè)都正確

C.(1)的假設(shè)正確,(2)的假設(shè)錯(cuò)誤

D.(1)與(2)的假設(shè)都錯(cuò)誤答案:A39.將參數(shù)方程化為普通方程為(

A.y=x-2

B.y=x+2

C.y=x-2(2≤x≤3)

D.y=x+2(0≤y≤1)答案:C40.一元二次不等式ax2+bx+c≤0的解集是全體實(shí)數(shù)所滿足的條件是(

)

A.

B.

C.

D.答案:D41.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B42.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()

A.3

B.

C.

D.4答案:B43.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為

______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:444.已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,27),

(1)求函數(shù)f(x)的解析式;

(2)求f(5);

(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.答案:(1)設(shè)正整數(shù)指數(shù)函數(shù)為f(x)=ax(a>0,a≠1,x∈N+),因?yàn)楹瘮?shù)f(x)的圖象經(jīng)過點(diǎn)(3,27),所以f(3)=27,即a3=27,解得a=3,所以函數(shù)f(x)的解析式為f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定義域?yàn)镹+,且在定義域上單調(diào)遞增,∴f(x)有最小值,最小值是f(1)=3;f(x)無最大值.解析:已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,27),(1)求函數(shù)f(x)的解析式;(2)求f(5);(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.45.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()

A.平行

B.重合

C.相交

D.以上答案都不對(duì)答案:A46.已知兩點(diǎn)A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A47.已知定義在實(shí)數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之間的大小關(guān)系為()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù)∴|x|越大,函數(shù)值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故選A48.若直線l與直線2x+5y-1=0垂直,則直線l的方向向量為______.答案:直線l與直線2x+5y-1=0垂直,所以直線l:5x-2y+k=0,所以直線l的方向向量為:(2,5).故為:(2,5)49.將兩個(gè)數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()

A.

B.

C.

D.

答案:B50.若直線的參數(shù)方程為,則直線的斜率為(

)A.B.C.D.答案:D第3卷一.綜合題(共50題)1.過P(-1,1),Q(3,9)兩點(diǎn)的直線的斜率為(

A.2

B.

C.4

D.答案:A2.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.3.已知一個(gè)四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因?yàn)槿晥D復(fù)原的幾何體是正四棱錐,底面邊長(zhǎng)為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.4.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C5.若直線x=1的傾斜角為α,則α等于()A.0°B.45°C.90°D.不存在答案:直線x=1與x軸垂直,故直線的傾斜角是90°,故選C.6.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(

A.

B.

C.

D.答案:B7.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點(diǎn),若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.8.隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()

A.

B.0

C.1

D.答案:D9.若角α和β的兩邊分別對(duì)應(yīng)平行且方向相反,則當(dāng)α=45°時(shí),β=______.答案:由題意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故為45°.10.一牧場(chǎng)有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設(shè)發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實(shí)驗(yàn)結(jié)果都是相互獨(dú)立的,∴ξ~B(10,0.02),∴由二項(xiàng)分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19611.一個(gè)十二面體共有8個(gè)頂點(diǎn),其中2個(gè)頂點(diǎn)處各有6條棱,其它頂點(diǎn)處都有相同的棱,則其它頂點(diǎn)處的棱數(shù)為______.答案:此十二面體如右圖,數(shù)形結(jié)合可得則其它頂點(diǎn)處的棱數(shù)為4故為412.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長(zhǎng)定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.13.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0

(1)證明:1a是f(x)的一個(gè)根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),f(x)=0的兩個(gè)根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個(gè)根.(2)假設(shè)1a<c,又1a>0由0<x<c時(shí),f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個(gè)根不相等∴1a≠c,只有1a>c14.類比“等差數(shù)列的定義”給出一個(gè)新數(shù)列“等和數(shù)列的定義”是()A.連續(xù)兩項(xiàng)的和相等的數(shù)列叫等和數(shù)列B.從第一項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列C.從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的差都不相等的數(shù)列叫等和數(shù)列D.從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列答案:由等差數(shù)列的定義:從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的差都相等的數(shù)列叫等差數(shù)列類比可得:從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列故選D15.點(diǎn)P(x0,y0)在圓x2+y2=r2內(nèi),則直線x0x+y0y=r2和已知圓的公共點(diǎn)的個(gè)數(shù)為(

A.0

B.1

C.2

D.不能確定答案:A16.給定兩個(gè)長(zhǎng)度為1且互相垂直的平面向量OA和OB,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng).若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5217.已知△ABC是邊長(zhǎng)為2a的正三角形,那么它的斜二側(cè)所畫直觀圖△A′B′C′的面積為()

A.a(chǎn)2

B.a(chǎn)2

C.a(chǎn)2

D.a(chǎn)2答案:C18.如圖,從圓O外一點(diǎn)P引兩條直線分別交圓O于點(diǎn)A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長(zhǎng)等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3519.命題“對(duì)于正數(shù)a,若a>1,則lg

a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個(gè)數(shù)為()A.0B.1C.2D.4答案:原命題“對(duì)于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對(duì)于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對(duì)于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對(duì)于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.20.直線y=3的一個(gè)單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個(gè)單位法向量是(0,1)故為:(0,1)21.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點(diǎn),并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C22.橢圓x2+my2=1的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則m的值為______.答案:方程x2+my2=1變?yōu)閤2+y21m=1∵焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,∴1m=2,解得m=14故應(yīng)填1423.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.24.一個(gè)箱子中裝有質(zhì)量均勻的10個(gè)白球和9個(gè)黑球,一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個(gè)白球中取5個(gè)白球有C105種9個(gè)黑球中取5個(gè)黑球有C95種∴一次摸出5個(gè)球,它們的顏色相同的有C105+C95種∴一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:2325.在某次數(shù)學(xué)考試中,考生的成績(jī)X~N(90,100),則考試成績(jī)X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績(jī)X~N(90,100),∴正弦曲線關(guān)于x=90對(duì)稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績(jī)X位于區(qū)間(80,90)上的概率為0.3413,故為:0.341326.平面向量的夾角為,則等于(

A.

B.3

C.7

D.79答案:A27.等于()

A.

B.

C.

D.答案:B28.函數(shù)f(x)=8xx2+2(x>0)()A.當(dāng)x=2時(shí),取得最小值83B.當(dāng)x=2時(shí),取得最大值83C.當(dāng)x=2時(shí),取得最小值22D.當(dāng)x=2時(shí),取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當(dāng)且僅當(dāng)x=2x即x=2時(shí),取得最大值22故選D.29.如圖,在正方體OABC-O1A1B1C1中,棱長(zhǎng)為2,E是B1B的中點(diǎn),則點(diǎn)E的坐標(biāo)為()

A.(2,2,1)

B.(2,2,)

C.(2,2,)

D.(2,2,)

答案:A30.P是△ABC所在平面上的一點(diǎn),且滿足,若△ABC的面積為1,則△PAB的面積為()

A.

B.

C.

D.答案:B31.若直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為邊長(zhǎng)的三角形是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.不能確定答案:B32.要使直線y=kx+1(k∈R)與焦點(diǎn)在x軸上的橢圓x27+y2a=1總有公共點(diǎn),實(shí)數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點(diǎn)在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(diǎn)(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點(diǎn),則(0,1)應(yīng)在橢圓上或其內(nèi)部,即a>1,所以實(shí)數(shù)a的取值范圍是[1,7).故為[1,7).33.某化肥廠甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)這種抽樣方法是哪一種?

(2)將這兩組數(shù)據(jù)用莖葉圖表示;

(3)將兩組數(shù)據(jù)比較,說明哪個(gè)車間產(chǎn)品較穩(wěn)定.答案:(1)因?yàn)殚g隔時(shí)間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因?yàn)?x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產(chǎn)品較穩(wěn)定.34.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點(diǎn),則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點(diǎn),設(shè)過點(diǎn)P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y

12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.35.一動(dòng)圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設(shè)動(dòng)圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點(diǎn)P的軌跡是雙曲線的一支.故選C.36.設(shè)A、B、C、D是半徑

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論