版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年鐘山職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知A(4,1,3),B(2,-5,1),C是線段AB上一點,且,則C點的坐標(biāo)為()
A.
B.
C.
D.答案:C2.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點,∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設(shè)所作的兩切線交于點P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°3.某初級中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校預(yù)備年級全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號,求得間隔數(shù)k==16,即每16人抽取一個人.在1~16中隨機抽取一個數(shù),如果抽到的是7,則從33~48這16個數(shù)中應(yīng)取的數(shù)是(
)
A.40
B.39
C.38
D.37答案:B4.(理)已知函數(shù)f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數(shù)的圖象如圖,直線y=y0交函數(shù)圖象于如圖,由正弦曲線的對稱性,可得A(a,y0)與B(b,y0)關(guān)于直線x=12對稱,因此a+b=1當(dāng)直線線y=y0向上平移時,經(jīng)過點(2011,1)時圖象兩個圖象恰有兩個公共點(A、B重合)所以0<y0<1時,兩個圖象有三個公共點,此時滿足f(a)=f(b)=f(c),(a、b、c互不相等),說明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)5.數(shù)據(jù):1,1,3,3的眾數(shù)和中位數(shù)分別是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A6.設(shè)xi,yi
(i=1,2,…,n)是實數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n
i-1(xi-yi)2≥n
i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證
ni=1
yi2-2ni=1
xi?yi≥ni=1
zi2-2ni=1
xi?zi,由于ni=1
yi2=ni=1
zi2,故只需證ni=1
xi?zi≤ni=1
xi?yi
①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.7.已知隨機變量ξ的數(shù)學(xué)期望Eξ=0.05且η=5ξ+1,則Eη等于()
A.1.15
B.1.25
C.0.75
D.2.5答案:B8.(幾何證明選講選做題)
如圖,已知AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長是______.答案:∵AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故為:22.9.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D10.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點M(ρ,θ)關(guān)于極點的對稱點的極坐標(biāo)是______.答案:由點的極坐標(biāo)的意義可得,點M(ρ,θ)關(guān)于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關(guān)于極點的對稱點的極坐標(biāo)是(ρ,π+θ),故為(ρ,π+θ).11.已知P為拋物線y2=4x上一點,設(shè)P到準(zhǔn)線的距離為d1,P到點A(1,4)的距離為d2,則d1+d2的最小值為______.答案:∵y2=4x,焦點坐標(biāo)為F(1,0)根據(jù)拋物線定義可知P到準(zhǔn)線的距離為d1=|PF|d1+d2=|PF|+|PA|進(jìn)而可知當(dāng)A,P,F(xiàn)三點共線時,d1+d2的最小值=|AF|=4故為412.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應(yīng).∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.13.已知f(x)=2x,g(x)=3x.
(1)當(dāng)x為何值時,f(x)=g(x)?
(2)當(dāng)x為何值時,f(x)>1?f(x)=1?f(x)<1?
(3)當(dāng)x為何值時,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(0,1),且這兩個圖象只有一個公共點,∴當(dāng)x=0時,f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時,f(x)>1;當(dāng)x=0時,f(x)=1;當(dāng)x<0時,f(x)<1.(3)由圖可知:當(dāng)x>1時,g(x)>3;當(dāng)x=1時,g(x)=3;當(dāng)x<1時,g(x)<3.14.5位同學(xué)報名參加兩個課外活動小組,每位同學(xué)限報其中的一個小組,則不同的報名方法共有()
A.10種
B.20種
C.25種
D.32種答案:D15.設(shè)d1與d2都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于d1與d2的敘述正確的是()A.d1=d2B.d1與d2同向C.d1∥d2D.d1與d2有相同的位置向量答案:根據(jù)直線的方向向量定義,把直線上的非零向量以及與之共線的非零向量叫做直線的方向向量.因此,線Ax+By+C=0(AB≠0)的方向向量都應(yīng)該是共線的故選C.16.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.17.設(shè)、、是三角形的邊長,求證:
≥答案:證明見解析解析:證明:由不等式的對稱性,不防設(shè)≥≥,則≥左式-右式≥≥≥018.下列關(guān)于結(jié)構(gòu)圖的說法不正確的是()
A.結(jié)構(gòu)圖中各要素之間通常表現(xiàn)為概念上的從屬關(guān)系和邏輯上的先后關(guān)系
B.結(jié)構(gòu)圖都是“樹形”結(jié)構(gòu)
C.簡潔的結(jié)構(gòu)圖能更好地反映主體要素之間關(guān)系和系統(tǒng)的整體特點
D.復(fù)雜的結(jié)構(gòu)圖能更詳細(xì)地反映系統(tǒng)中各細(xì)節(jié)要素及其關(guān)系答案:B19.已知矩陣A=abcd,若矩陣A屬于特征值3的一個特征向量為α1=11,屬于特征值-1的一個特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.20.已知點A分BC所成的比為-13,則點B分AC所成的比為______.答案:由已知得B是AC的內(nèi)分點,且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.21.盒子中有10張獎券,其中3張有獎,甲、乙先后從中各抽取1張(不放回),記“甲中獎”為A,“乙中獎”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨立,說明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.22.由棱長為a的正方體的每個面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點為頂點的凸多面體的全面積是______.答案:由棱長為a的正方體的每個面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個,得到6個頂點,圍成一個正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點的距離應(yīng)為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a223.在空間直角坐標(biāo)系中,點,過點P作平面xOy的垂線PQ,則Q的坐標(biāo)為()
A.
B.
C.
D.答案:D24.已知|a|=1,|b|=2,a與b的夾角為60°,則a+b在a方向上的投影為______.答案:∵|a|=1,|b|=2,a與b的夾角為60°,∴a?b=a|×|b|×cos60°=1由此可得(a+b)2=|a|2+2a?b+|b|2=1+2+4=7∴|a+b|=7.設(shè)a+b與a的夾角為θ,則∵(a+b)?a=|a|2+a?b=2∴cosθ=(a+b)?a|a+b|?|a|=277,可得向量a+b在a方向上的投影為|a+b|cosθ=7×277=2故為:225.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時速在[60,70]的汽車大約有200×0.4=80故選B.26.寫出按從小到大的順序重新排列x,y,z三個數(shù)值的算法.答案:算法如下:(1).輸入x,y,z三個數(shù)值;(2).從三個數(shù)值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結(jié)果.27.已知向量OC=(2,2),CA=(2cosa,2sina),則向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故選B.28.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權(quán))按“0”,令aij=1,第i號同學(xué)同意第j號同學(xué)當(dāng)選.0,第i號同學(xué)不同意第j號同學(xué)當(dāng)選.其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學(xué)當(dāng)選的人數(shù)為()A.a(chǎn)11+a12+…+a1k+a21+a22+…+a2kB.a(chǎn)11+a21+…+ak1+a12+a22+…+ak2C.a(chǎn)11a12+a21a22+…+ak1ak2D.a(chǎn)11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學(xué)生是否同意第1號同學(xué)當(dāng)選依次由a11,a21,a31,…,ak1來確定(aij=1表示同意,aij=0表示不同意或棄權(quán)),是否同意第2號同學(xué)當(dāng)選依次由a12,a22,…,ak2確定,而是否同時同意1,2號同學(xué)當(dāng)選依次由a11a12,a21a22,…,ak1ak2確定,故同時同意1,2號同學(xué)當(dāng)選的人數(shù)為a11a12+a21a22+…+ak1ak2,故選C.29.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時,即m=2或m=3m≠0且m≠3?m=2時復(fù)數(shù)z為純虛數(shù).故為:2.30.如圖,AB是平面a的斜線段,A為斜足,若點P在平面a內(nèi)運動,使得△ABP的面積為定值,則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.31.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2
012”時,一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要條件.故選A.32.平面ABCD中,點A坐標(biāo)為(0,1,1),點B坐標(biāo)為(1,2,1),點C坐標(biāo)為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應(yīng)與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.33.對變量x,y
有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v
有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B34.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號與不等號的關(guān)系。35.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個B.2個C.4個D.8個答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個,故選C.36.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B37.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.38.已知拋物線y2=4x的焦點為F,準(zhǔn)線與x軸的交點為M,N為拋物線上的一點,且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設(shè)N到準(zhǔn)線的距離等于d,由拋物線的定義可得d=|NF|,
由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.39.若點A的坐標(biāo)為(3,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標(biāo)為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準(zhǔn)線方程為x=-12,設(shè)點M到準(zhǔn)線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當(dāng)P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點M的坐標(biāo)是(2,2),故選D.40.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)
=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.41.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A42.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個事件均互斥
D.任意兩個事件均不互斥答案:B43.若與垂直,則k的值是()
A.2
B.1
C.0
D.答案:D44.若圓C過點M(0,1)且與直線l:y=-1相切,設(shè)圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點P(0,t)(t>0),且滿足AP=λPB(λ>1).
(I)求曲線E的方程;
(II)若t=6,直線AB的斜率為12,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線l上,求證:t與QA?QB均為定值.答案:【解】(Ⅰ)依題意,點C到定點M的距離等于到定直線l的距離,所以點C的軌跡為拋物線,曲線E的方程為x2=4y.(Ⅱ)直線AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以拋物線x2=4y在點A處切線的斜率為y'|x=6=3.直線NA的方程為y-9=-13(x-6),即y=-13x+11.①線段AB的中點坐標(biāo)為(1,132),線段AB中垂線方程為y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圓C的方程為(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)設(shè)A(x1,x124),B(x2,x224),Q(a,-1).過點A的切線方程為y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直線AB的方程為y-x124=x1+x24(x-x
1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA?QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.45.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C46.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點,P是第一象限內(nèi)該橢圓上的一點,且P、F1、F2三點構(gòu)成一直角三角形,則點P的縱坐標(biāo)為______.答案:由題意,P是第一象限內(nèi)該橢圓上的一點,且P、F1、F2三點構(gòu)成一直角三角形,故可分為兩類:①當(dāng)∠P為直角時,設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時,P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33
或1247.平面上動點M到定點F(3,0)的距離比M到直線l:x+1=0的距離大2,則動點M滿足的方程()
A.x2=6y
B.x2=12y
C.y2=6x
D.y2=12x答案:D48.P是△ABC所在平面上的一點,且滿足,若△ABC的面積為1,則△PAB的面積為()
A.
B.
C.
D.答案:B49.已知點A(-3,8),B(2,4),若y軸上的點P滿足PA的斜率是PB斜率的2倍,則P點的坐標(biāo)為______.答案:設(shè)P(0,y),則∵點P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)50.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()
A.2
B.3
C.4
D.5答案:C第2卷一.綜合題(共50題)1.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為
______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:22.已知A、B、C三點不共線,O是平面ABC外的任一點,下列條件中能確定點M與點A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m?OA+n?OB+p?OC,m+n+p=1,說明M、A、B、C共面,可以判斷A、B、C都是錯誤的,則D正確.故選D.3.已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()
A.
B.3
C.
D.答案:A4.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標(biāo)為______.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).5.將某班的60名學(xué)生編號為:01,02,…,60,采用系統(tǒng)抽樣方法抽取一個容量為5的樣本,且隨機抽得的一個號碼為04,則剩下的四個號碼依次是______.答案:用系統(tǒng)抽樣抽出的5個學(xué)生的號碼從小到大成等差數(shù)列,隨機抽得的一個號碼為04則剩下的四個號碼依次是16、28、40、52.故為:16、28、40、526.某幾何體的三視圖如圖所示,則這個幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22
×3=33故為:33.7.下列說法中正確的是()
A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐
B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺
C.圓柱、圓錐、圓臺的底面都是圓
D.圓錐側(cè)面展開圖為扇形,這個扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C8.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A9.下列賦值語句中正確的是()
A.m+n=3
B.3=i
C.i=i2+1
D.i=j=3答案:C10.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點.
(1)求異面直線BD1與CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D為原點,DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)11.與雙曲線x2-y24=1有共同的漸近線,且過點(2,2)的雙曲線的標(biāo)準(zhǔn)方程為______.答案:設(shè)雙曲線方程為x2-y24=λ∵過點(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=112.直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),則k的取值范圍是
______.答案:聯(lián)立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當(dāng)k+1≠0即k≠-1時,解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點坐標(biāo)為(kk-1,2k-1k-1)因為直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<1213.對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in)
(n是不小于2的正整數(shù)),對于任意p,q∈1,2,3,…,n,當(dāng)p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于______.答案:由題意知當(dāng)p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,在數(shù)組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對逆序數(shù)對,故為:4.14.如圖,割線PAB經(jīng)過圓心O,PC切圓O于點C,且PC=4,PB=8,則△PBC的外接圓的面積為______.答案:∵PC切圓O于點C,∴根據(jù)切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設(shè)△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π15.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.16.甲、乙兩人破譯一種密碼,它們能破譯的概率分別為和,求:
(1)恰有一人能破譯的概率;(2)至多有一人破譯的概率;
(3)若要破譯出的概率為不小于,至少需要多少甲這樣的人?答案:(1)(2)(3)至少需4個甲這樣的人才能滿足題意.解析:(1)設(shè)A為“甲能譯出”,B為“乙能譯出”,則A、B互相獨立,從而A與、與B、與均相互獨立.“恰有一人能譯出”為事件,又與互斥,則(2)“至多一人能譯出”的事件,且、、互斥,∴(3)設(shè)至少需要n個甲這樣的人,而n個甲這樣的人譯不出的概率為,∴n個甲這樣的人能譯出的概率為,由∴至少需4個甲這樣的人才能滿足題意.17.參數(shù)方程(0<θ<2π)表示()
A.雙曲線的一支,這支過點(1,)
B.拋物線的一部分,這部分過(1,)
C.雙曲線的一支,這支過點(-1,)
D.拋物線的一部分,這部分過(-1,)答案:B18.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長為()
A.4
B.2
C.4
D.3答案:A19.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.20.設(shè)集合A={1,2},則滿足A∪B={1,2,3}的集合B的個數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個數(shù)問題,所以滿足題目條件的集合B共有22=4個.故選擇C.21.對于任意空間四邊形,試證明它的一組對邊中點的連線與另一組對邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點,利用多邊形加法法則可得①又E、F分別是AB、CD的中點,故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.22.已知M為橢圓x2a2+y2b2=1(a>b>0)上的動點,F(xiàn)1、F2為橢圓焦點,延長F2M至點B,則ρF1MB的外角的平分線為MN,過點F1作
F1Q⊥MN,垂足為Q,當(dāng)點M在橢圓上運動時,則點Q的軌跡方程是______.答案:點F1關(guān)于∠F1MF2的外角平分線MQ的對稱點N在直線F1M的延長線上,故|F1N|=|PF1|+|PF2|=2a(橢圓長軸長),又OQ是△F2F1N的中位線,故|OQ|=a,點Q的軌跡是以原點為圓心,a為半徑的圓,點Q的軌跡方程是x2+y2=a2故為:x2+y2=a223.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設(shè)點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.
(1)試用向量方法證明E、F、G、H四點共面;
(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)
分別延長PE、PF、PG、PH交對邊于M、N、Q、R點,因為E、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點,順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點,∴平面EFGH∥平面ABCD.24.
如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=6,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=()
A.4
B.3
C.5
D.6
答案:A25.一個箱中原來裝有大小相同的
5
個球,其中
3
個紅球,2
個白球.規(guī)定:進(jìn)行一次操
作是指“從箱中隨機取出一個球,如果取出的是紅球,則把它放回箱中;如果取出的是白
球,則該球不放回,并另補一個紅球放到箱中.”
(1)求進(jìn)行第二次操作后,箱中紅球個數(shù)為
4
的概率;
(2)求進(jìn)行第二次操作后,箱中紅球個數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個數(shù)為
4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.26.已知a,b,c是空間的一個基底,且實數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:027.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()
A.
B.
C.
D.答案:C28.已知原命題“兩個無理數(shù)的積仍是無理數(shù)”,則:
(1)逆命題是“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”;
(2)否命題是“兩個不都是無理數(shù)的積也不是無理數(shù)”;
(3)逆否命題是“乘積不是無理數(shù)的兩個數(shù)都不是無理數(shù)”;
其中所有正確敘述的序號是______.答案:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”,正確.(2)同時否定原命題的條件和結(jié)論得到否命題:“兩個不都是無理數(shù)的積也不是無理數(shù)”,正確.(3)同時否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無理數(shù)的兩個數(shù)不都是無理數(shù)”.所以逆否命題錯誤.故為:(1)(2).29.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B30.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于N,見圖中非陰影部分),則該半圓的半徑長為______.答案:連接OM,則OM⊥AB.設(shè)⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.31.從5名男學(xué)生、3名女學(xué)生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時,有C32C51=15種結(jié)果,當(dāng)包括兩男一女時,有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.32.若實數(shù)X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D33.設(shè),,,則P,Q,R的大小順序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B34.Rt△ABC中,CD是斜邊AB上的高,該圖中只有x個三角形與△ABC相似,則x的值為()A.1B.2C.3D.4答案:∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD△ACD∽CBD△ABC∽CBD所以有三對相似三角形,該圖中只有2個三角形與△ABC相似.故選B.35.已知兩點分別為A(4,3)和B(7,-1),則這兩點之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.36.搖獎器有10個小球,其中8個小球上標(biāo)有數(shù)字2,2個小球上標(biāo)有數(shù)字5,現(xiàn)搖出3個小球,規(guī)定所得獎金(元)為這3個小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學(xué)期望.答案:設(shè)此次搖獎的獎金數(shù)額為ξ元,當(dāng)搖出的3個小球均標(biāo)有數(shù)字2時,ξ=6;當(dāng)搖出的3個小球中有2個標(biāo)有數(shù)字2,1個標(biāo)有數(shù)字5時,ξ=9;當(dāng)搖出的3個小球有1個標(biāo)有數(shù)字2,2個標(biāo)有數(shù)字5時,ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)
答:此次搖獎獲得獎金數(shù)額的數(shù)字期望是395元.37.參數(shù)方程x=sinθ+cosθy=sinθ?cosθ化為普通方程是______.答案:把x=sinθ+cosθy=sinθ?cosθ利用同角三角函數(shù)的基本關(guān)系消去參數(shù)θ,化為普通方程可得x2=1+2y,故為x2=1+2y.38.將圖形F按=(,)(其中)平移,就是將圖形F()A.向x軸正方向平移個單位,同時向y軸正方向平移個單位.B.向x軸負(fù)方向平移個單位,同時向y軸正方向平移個單位.C.向x軸負(fù)方向平移個單位,同時向y軸負(fù)方向平移個單位.D.向x軸正方向平移個單位,同時向y軸負(fù)方向平移個單位.答案:A解析:根據(jù)圖形容易得出結(jié)論.39.極坐標(biāo)方程ρcos2θ=0表示的曲線為()
A.極點
B.極軸
C.一條直線
D.兩條相交直線答案:D40.橢圓x=3cosθy=4sinθ的離心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其離心率e=ca=74.故為:74.41.已知A(1,0).B(7,8),若點A和點B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線AB平行且到直線l的距離都為5的直線共有兩條,分別位于直線AB的兩側(cè),由線段AB的長度等于10,還有一條直線是線段AB的中垂線,故滿足上述條件的直線l共有3條,故選C.42.
選修1:幾何證明選講
如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以O(shè)P∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.43.中心在坐標(biāo)原點,離心率為的雙曲線的焦點在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D44.若A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)||取最小值時,x的值等于(
)
A.
B.
C.
D.答案:C45.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點M,則∠AMB≥90°的概率為______.答案:過A點做BC的垂線,垂足為M',當(dāng)M點落在線段BM'(含M'點不含B點)上時∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1446.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C47.已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為______.答案:依題設(shè)P在拋物線準(zhǔn)線的投影為P',拋物線的焦點為F,則F(12,0),依拋物線的定義知P到該拋物線準(zhǔn)線的距離為|PP'|=|PF|,則點P到點A(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.48.點O是四邊形ABCD內(nèi)一點,滿足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設(shè)BC中點為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點都在BC邊的中線上,且|AO|=2|OE|,所以O(shè)為△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.49.利用獨立性檢驗對兩個分類變量是否有關(guān)系進(jìn)行研究時,若有99.5%的把握說事件A和B有關(guān)系,則具體計算出的數(shù)據(jù)應(yīng)該是()
A.K2≥6.635
B.K2<6.635
C.K2≥7.879
D.K2<7.879答案:C50.分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的()
A.充分條件
B.必要條件
C.充要條件
D.等價條件答案:A第3卷一.綜合題(共50題)1.已知定點A(12.0),M為曲線x=6+2cosθy=2sinθ上的動點,若AP=2AM,試求動點P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動點(x,y)由AP=2AM,即M為線段AP的中點故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動點P的軌跡C的方程為x2+y2=162.設(shè)四邊形ABCD中,有且,則這個四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C3.方程組的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C4.如圖,正六邊形ABCDEF中,=()
A.
B.
C.
D.
答案:D5.過P(-1,1),Q(3,9)兩點的直線的斜率為(
)
A.2
B.
C.4
D.答案:A6.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點F且斜率為k(k>0)的直線與C相交于A、B兩點,若AF=3FB,則k=______.答案:設(shè)l為橢圓的右準(zhǔn)線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.7.比較大?。篴=0.20.5,b=0.50.2,則()
A.0<a<b<1
B.0<b<a<1
C.1<a<b
D.1<b<a答案:A8.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.9.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機測得10對母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時,可以估計女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時,y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.10.如圖所示,設(shè)k1,k2,k3分別是直線l1,l2,l3的斜率,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:C11.一個容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.12.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當(dāng)a>0時,方程對應(yīng)的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當(dāng)a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>113.化簡5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b14.拋物線y=ax2(其中a>0)的焦點坐標(biāo)是(
)
A.(,0)
B.(0,)
C.(,0)
D.(0,)答案:D15.整數(shù)630的正約數(shù)(包括1和630)共有______個.答案:首先將630分解質(zhì)因數(shù)630=2×32×5×7;然后注意到每一因數(shù)可出現(xiàn)的次冪數(shù),如2可有20,21兩種情況,3有30,31,32三種情況,5有50,51兩種情況,7有70,71兩種情況,按分步計數(shù)原理,整數(shù)630的正約數(shù)(包括1和630)共有2×3×2×2=24個.故為:24.16.我市某機構(gòu)為調(diào)查2009年下半年落實中學(xué)生“陽光體育”活動的情況,設(shè)平均每人每天參加體育鍛煉時間為X(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項活動,右圖是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的頻率是()A.0.62B.0.38C.6200D.3800答案:由圖知輸出的S的值是運動時間超過20分鐘的學(xué)生人數(shù),由于統(tǒng)計總?cè)藬?shù)是10000,又輸出的S=6200,故運動時間不超過20分鐘的學(xué)生人數(shù)是3800事件“平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的”頻率是380010000=0.38故選B17.某班有40名學(xué)生,其中有15人是共青團員.現(xiàn)將全班分成4個小組,第一組有學(xué)生10人,共青團員4人,從該班任選一個學(xué)生代表.在選到的學(xué)生代表是共青團員的條件下,他又是第一組學(xué)生的概率為()A.415B.514C.14D.34答案:由于所有的共青團員共有15人,而第一小組有4人是共青團員,故在選到的學(xué)生代表是共青團員的條件下,他又是第一組學(xué)生的概率為415,故選A.18.(1+x2)5的展開式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項為C25(x2)2=10×x24=52x2,故選項為為C.19.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點.
(1)若A,B的中點為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個三等分點,求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個三等分點,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t
22=-84a2+1,∴t
22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).20.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)21.已知在一個二階矩陣M對應(yīng)變換的作用下,點A(1,2)變成了點A′(7,10),點B(2,0)變成了點B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)22.已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-4)2=1上一個動點,那么點P到點Q的距離與點P到拋物線的準(zhǔn)線距離之和的最小值是()
A.2-1
B.2-2
C.-1
D.-2答案:C23.在極坐標(biāo)系中,曲線ρ=4cosθ圍成的圖形面積為()
A.π
B.4
C.4π
D.16答案:C24.四個森林防火觀察站A,B,C,D的坐標(biāo)依次為(5,0),(-5,0),(0,5),(0,-5),他們都發(fā)現(xiàn)某一地區(qū)有火訊.若A,B觀察到的距離相差為6,且離A近,C,D觀察到的距離相差也為6,且離C近.試求火訊點的坐標(biāo).答案:設(shè)火訊點的坐標(biāo)P(x,y),由于觀察到的距離相差為6,點P在雙曲線上,由于離A近,所以點P在雙曲線x29-y216=1(x≥3)上;由于離C近,所以點P在雙曲線Y29-X216=1(Y≥3)上;由這兩個方程解得:x=1277y=1277答:火訊點的坐標(biāo)為:(1277,1277).25.過點(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有()
A.1條
B.2條
C.3條
D.4條答案:B26.雙曲線的中心在坐標(biāo)原點,離心率等于2,一個焦點的坐標(biāo)為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個焦點的坐標(biāo)為(2,0),∴ca=2,
c=2且焦點在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進(jìn)方程為y=±3x.故為y=±3x27.橢圓x=3cosθy=4sinθ的離心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其離心率e=ca=74.故為:74.28.求由曲線圍成的圖形的面積.答案:面積為解析:當(dāng),時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當(dāng),時,方程表示在第一象限的部分以及軸,軸負(fù)半軸上的點,.同理,當(dāng),時,方程表示在第四象限的部分以及軸負(fù)半軸上的點;當(dāng),時,方程表示圓在第二象限的部分以及軸負(fù)半軸上的點;當(dāng),時,方程表示圓在第三象限部分.以上合起來構(gòu)成如圖所示的圖形,面積為.29.復(fù)數(shù)(12+32i)3i的值為______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+
isinπ2=cosπ2+isinπ2=i,故為:i.30.一個多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A31.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2232.(不等式選講選做題)已知a,b,c∈R+,且a+b+c=1,則3a+1+3b+1+3c+1的最大值為______.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1),即a=b=c=13時,(3a+1+3b+1+3c+1)2的最大值為18因此3a+1+3b+1+3c+1的最大值為32.故為:3233.如圖,以1×3方格紙中的格點為起點和終點的所有向量中,有多少種大小不同的模?有多少種不同的方向?
答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個模,進(jìn)而分析方向,正方形的邊對應(yīng)的向量共有四個方向,邊長為1的正方形的對角線對應(yīng)的向量共四個方向;1×2的矩形的對角線對應(yīng)的向量共四個方向;1×3的矩形對角線對應(yīng)的向量共有四個方向共有16個方向34.過點P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點P平分,該直線的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C35.下圖是由哪個平面圖形旋轉(zhuǎn)得到的(
)答案:A36.給出20個數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.37.下列命題中正確的是()
A.若,則
B.若,則
.若,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水務(wù)培訓(xùn)課件教學(xué)課件
- 捉浪花課件教學(xué)課件
- 游覽路線課件教學(xué)課件
- 2024年度版權(quán)交換合同標(biāo)的及交換條件
- 2024年品牌授權(quán)經(jīng)銷合同
- 2024年度xyz公司人工智能技術(shù)授權(quán)合同
- 2024年度BIM技術(shù)在建筑可視化與展示中的應(yīng)用合同
- 2024年度培訓(xùn)費用協(xié)議書
- 2024年度0KV電力線路施工綠化配套合同
- 2024年北京影視特效技術(shù)服務(wù)協(xié)議
- 回收PET塑料資源化利用及產(chǎn)業(yè)化進(jìn)展研究
- 英語-浙江省湖州、衢州、麗水2024年11月三地市高三教學(xué)質(zhì)量檢測試卷試題和答案
- 勞動技術(shù)教案
- 廣東省深圳市2023-2024學(xué)年高一上學(xué)期生物期中試卷(含答案)
- 大學(xué)美育(同濟大學(xué)版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 勞動法律學(xué)習(xí)試題
- 過敏性休克完整版本
- 應(yīng)急第一響應(yīng)人理論考試試卷(含答案)
- DZ∕T 0213-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 石灰?guī)r、水泥配料類(正式版)
- 2024年湖北省工業(yè)建筑集團有限公司招聘筆試參考題庫含答案解析
- 軟件工程師專業(yè)人物訪談
評論
0/150
提交評論