版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年湖南民族職業(yè)學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點,已知燈口直徑是60
cm,燈深40
cm,則光源到反射鏡頂點的距離是
______cm.答案:設拋物線方程為y2=2px(p>0),點(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點的距離為458cm.2.函數y=ax+b與y=logbx且a>0,在同一坐標系內的圖象是()A.
B.
C.
D.
答案:∵a>0,則函數y=ax+b為增函數,與y軸的交點為(0,b)當0<b<1時,函數y=ax+b與y軸的交點在原點和(0,1)點之間,y=logbx為減函數,D圖滿足要求;當b>1時,函數y=ax+b與y軸的交點在(0,1)點上方,y=logbx為增函數,不存在滿足條件的圖象;故選D3.已知a=(1,2),則|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故為5.4.P是△ABC所在平面上的一點,且滿足,若△ABC的面積為1,則△PAB的面積為()
A.
B.
C.
D.答案:B5.已知圓錐的母線長為5,底面周長為6π,則圓錐的體積是______.答案:圓錐的底面周長為6π,所以圓錐的底面半徑為3;圓錐的高為4所以圓錐的體積為13×π32×4=12π故為12π.6.2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質量標準》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.
某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數據,數據統(tǒng)計如下:
組別PM2.5濃度
(微克/立方米)頻數(天)頻率
第一組(0,25]50.25第二組(25,50]100.5第三組(50,75]30.15第四組(75,100)20.1(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.答案:(Ⅰ)
設PM2.5的24小時平均濃度在(50,75]內的三天記為A1,A2,A3,PM2.5的24小時平均濃度在(75,100)內的兩天記為B1,B2.所以5天任取2天的情況有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10種.
…(4分)其中符合條件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6種.
…(6分)所以所求的概率P=610=35.
…(8分)(Ⅱ)去年該居民區(qū)PM2.5年平均濃度為:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因為40>35,所以去年該居民區(qū)PM2.5年平均濃度不符合環(huán)境空氣質量標準,故該居民區(qū)的環(huán)境需要改進.
…(12分)7.設集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點,點的橫坐標,縱坐標都是自然數,且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.8.平面上動點M到定點F(3,0)的距離比M到直線l:x+1=0的距離大2,則動點M滿足的方程()
A.x2=6y
B.x2=12y
C.y2=6x
D.y2=12x答案:D9.若直線x=1的傾斜角為α,則α等于
______.答案:因為直線x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°10.對某種電子元件進行壽命跟蹤調查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數量與壽命在300~600小時的電子元件的數量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數量與壽命在300~600小時的電子元件的數量的比大約是0.2:0.8=14故選C11.橢圓x=5cosαy=3sinα(α是參數)的一個焦點到相應準線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數)的標準方程為:x225+y29=1,它的右焦點(4,0),右準線方程為:x=254.一個焦點到相應準線的距離為:254-4=94.故為:94.12.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數y=tanx在(0,π2)上單調遞增,且函數值為正,所以tanα2>tanα3>0,即k2>k3>0.當α為鈍角時,tanα為負,所以k1=tanα1<0.綜上k1<k3<k2,故選A.13.如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數軸上的點到4的距離與到-5的距離的差,差的最大值為9,如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數b的取值范圍為b>9;故為:b>9.14.三段論:“①船準時啟航就能準時到達目的港,②這艘船準時到達了目的港,③這艘船是準時啟航的”中,“小前提”是______.(填序號)答案:三段論:“①船準時啟航就能準時到達目的港;②這艘船準時到達了目的港,③這艘船是準時啟航的,我們易得大前提是①,小前提是②,結論是③,故為:②.15.設直線過點(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()
A.±
B.±2
C.±2
D.±4答案:B16.甲、乙兩位同學都參加了由學校舉辦的籃球比賽,它們都參加了全部的7場比賽,平均得分均為16分,標準差分別為5.09和3.72,則甲、乙兩同學在這次籃球比賽活動中,發(fā)揮得更穩(wěn)定的是()
A.甲
B.乙
C.甲、乙相同
D.不能確定答案:B17.已知橢圓C的左右焦點坐標分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)求弦AB的長度.答案:(本小題滿分13分)(1)依題意可設橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設A(x1,y1),B(x2,y2)…(7分)聯立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)18.設A(3,4),在x軸上有一點P(x,0),使得|PA|=5,則x等于()
A.0
B.6
C.0或6
D.0或-6答案:C19.曲線的極坐標方程ρ=4sinθ化為直角坐標方程為______.答案:將原極坐標方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.20.滿足{1,2}∪A={1,2,3}的集合A的個數為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數為4.21.O為△ABC平面上一定點,該平面上一動點p滿足M={P|OP=OA+λ(AB|AB|sinC+AC|AC|sinB)
,λ>0},則△ABC的()一定屬于集合M.A.重心B.垂心C.外心D.內心答案:如圖:D是BC的中點,在△ABC中,由正弦定理得,|AB|sinC=|AC|sinB即sinc|AB|=sinB||AC|,設t=sinc|AB|=sinB||AC|,代入OP=OA+λ(AB|AB|sinC+AC|AC|sinB)得,OP=OA+λt(AB+AC)①,∵D是BC的中點,∴AB+AC=2AD,代入①得,OP=OA+2λtAD,∴AP=2λtAD且λ、t都是常數,則AP∥AD,∴點P得軌跡是直線AD,△ABC的重心一定屬于集合M,故選A.22.設O、A、B、C為平面上四個點,(
)
A.2
B.2
C.3
D.3答案:C23.設集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.24.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.25.若集合A={1,2,3},則集合A的真子集共有()A.3個B.5個C.7個D.8個答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選C.26.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.27.已知點P在曲線C1:x216-y29=1上,點Q在曲線C2:(x-5)2+y2=1上,點R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線的知識可知:C1x216-y29=1的兩個焦點分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C28.用0,1,2,3組成沒有重復數字的四位數,其中奇數有()
A.8個
B.10個
C.18個
D.24個答案:A29.已知|a|=8,e是單位向量,當它們之間的夾角為π3時,a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個向量數量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B30.如圖,F是定直線l外的一個定點,C是l上的動點,有下列結論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當的坐標系,求出該拋物線的方程;
(Ⅱ)對以上結論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據)答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點為原點,KF所在直線為x軸建立平面直角坐標系如圖1,并設|KF|=p,則可得該拋物線的方程為
y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設PQ中點為M,P、Q、M在拋物線準線l上的射影分別為A、B、D,∵PQ是拋物線過焦點F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點F的直線與橢圓交于P、Q兩點,則以PQ為直徑的圓與橢圓相應的準線l相離”.此命題為真命題,證明如下:證明:設PQ中點為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點F的直線與雙曲線交于P、Q兩點,則以PQ為直徑的圓與雙曲線相應的準線l相交”.此命題為真命題,證明如下:證明:設PQ中點為M,橢圓的離心率為e,則e>1,P、Q、M在相應準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準線l相交.31.將直線y=x繞原點逆時針旋轉60°,所得直線的方程為()
A.y=-x
B.
C.y=-3x
D.答案:A32.一圓形紙片的圓心為點O,點Q是圓內異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當點A運動時點P的軌跡是()A.圓B.橢圓C.雙曲線D.拋物線答案:如圖所示,由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴當點A運動時點P的軌跡是以點O,D為焦點,長軸長為R的橢圓.故選B.33.已知A、B、C三點不共線,O是平面ABC外的任一點,下列條件中能確定點M與點A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m?OA+n?OB+p?OC,m+n+p=1,說明M、A、B、C共面,可以判斷A、B、C都是錯誤的,則D正確.故選D.34.寫出按從小到大的順序重新排列x,y,z三個數值的算法.答案:算法如下:(1).輸入x,y,z三個數值;(2).從三個數值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結果.35.已知平行四邊形ABCD,下列正確的是()
A.
B.
C.
D.答案:B36.經過兩點A(-3,5),B(1,1
)的直線傾斜角為______.答案:因為兩點A(-3,5),B(1,1
)的直線的斜率為k=1-51-(-3)=-1所以直線的傾斜角為:135°.故為:135°.37.如圖,在平行四邊形OABC中,點C(1,3).
(1)求OC所在直線的斜率;
(2)過點C做CD⊥AB于點D,求CD所在直線的方程.答案:(1)∵點O(0,0),點C(1,3),∴OC所在直線的斜率為kOC=3-01-0=3.(2)在平行四邊形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直線的斜率為kCD=-13.∴CD所在直線方程為y-3=-13(x-1),即x+3y-10=0.38.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()
A.
B.
C.
D.2答案:A39.某個幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.40.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.41.已知=1-ni,其中m,n是實數,i是虛數單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C42.已知函數f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小,則實數a的取值范圍______.答案:∵函數f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實數a的取值范圍為(-2,1)故為:(-2,1)43.在空間直角坐標系中,O為坐標原點,設A(,,),B(,,0),C(
,,),則(
)
A.OA⊥AB
B.AB⊥AC
C.AC⊥BC
D.OB⊥OC答案:C44.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號依次為1到50的袋裝奶粉中抽取5袋進行檢驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號可能是()
A.5,10,15,20,25
B.2,4,8,16,32
C.1,2,3,4,5
D.7,17,27,37,47答案:D45.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D46.已知x,y之間的一組數據:x1.081.121.191.28y2.252.372.402.55y與x之間的線性性回歸方y(tǒng)=bx+a必過定點______.答案:回歸直線方程一定過樣本的中心點(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,
.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點是(1.1675,2.3925),故為(1.1675,2.3925).47.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a48.隨機變量ξ服從二項分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()
A.
B.0
C.1
D.答案:D49.電子跳蚤游戲盤是如圖所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤開始時在BC邊的點P0處,BP0=4.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3=BP2;跳蚤按上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數),則點P2010與C間的距離為______答案:∵由題意可以發(fā)現每邊各有兩點,其中BC邊上P0,P6,P12…重合,P3,P9,P15…重合,AC邊上P1,P7,P13…重合,P4,P10,P16…重合,AB邊上P2,P8,P14…重合,P5,P11,P17…重合.發(fā)現規(guī)律2010為六的倍數所以與P0重合,∴與C點之間的距離為6故為:650.設U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}第2卷一.綜合題(共50題)1.某人從家乘車到單位,途中有3個交通崗亭.假設在各交通崗遇到紅燈的事件是相互獨立的,且概率都是0.4,則此人上班途中遇紅燈的次數的期望為()
A.0.4
B.1.2
C.0.43
D.0.6答案:B2.a=0是復數a+bi(a,b∈R)為純虛數的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當a=0時,復數a+bi=bi,當b=0是不是純虛數即“a=0”成立推不出“復數a+bi(a,b∈R)為純虛數”反之,當復數a+bi(a,b∈R)為純虛數,則有a=0且b≠0即“復數a+bi(a,b∈R)為純虛數”成立能推出“a=0“成立故a=0是復數a+bi(a,b∈R)為純虛數的必要不充分條件故選B3.已知定點A(2,0),圓O的方程為x2+y2=8,動點M在圓O上,那么∠OMA的最大值是()
A.
B.
C.arccos
D.arccos答案:B4.下面五個命題:(1)所有的單位向量相等;(2)長度不等且方向相反的兩個向量不一定是共線向量;(3)由于零向量的方向不確定,故0與任何向量不平行;(4)對于任何向量a,b,必有|a+b|≤|a|+|b|.其中正確命題的序號為:______.答案:(1)單位向量指模為1的向量,方向可為任意的,故錯誤;(2)由共線向量的定義,方向相反的兩個向量一定是共線向量,故錯誤;(3)規(guī)定:零向量與任何向量為平行向量,故錯誤;(4)因為|a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正確故為:(4)5.如圖,四邊形OABC是邊長為1的正方形,OD=3,點P為△BCD內(含邊界)的動點,設(α,β∈R),則α+β的最大值等于
()
A.
B.
C.
D.1
答案:B6.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α7.條件語句的一般形式如圖所示,其中B表示的是()
A.條件
B.條件語句
C.滿足條件時執(zhí)行的內容
D.不滿足條件時執(zhí)行的內容
答案:C8.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設圓心坐標為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=209.若直線l:ax+by=1與圓C:x2+y2=1有兩個不同交點,則點P(a,b)與圓C的位置關系是(
)
A.點在圓上
B.點在圓內
C.點在圓外
D.不能確定答案:C10.已知橢圓的焦點是F1、F2,P是橢圓上的一個動點,如果延長F1P到Q,使得|PQ|=|PF2|,那么動點Q的軌跡是()
A.圓
B.橢圓
C.雙曲線的一支
D.拋物線答案:A11.方程組的解集是()
A.{-1,2}
B.(-1,2)
C.{(-1,2)}
D.{(x,y)|x=-1或y=2}答案:C12.如果命題“曲線C上的點的坐標都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對應的點都在曲線C上
C.不滿足方程f(x,y)=0的點(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C13.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因為直線的斜率是其傾斜角的正切值,當傾斜角大于90°小于180°時,斜率為負值,當傾斜角大于0°小于90°時斜率為正值,且正切函數在(0°,90°)上為增函數,由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.14.設橢圓的左焦點為F,AB為橢圓中過點F的弦,試分析以AB為直徑的圓與橢圓的左準線的位置關系.答案:設M為弦AB的中點(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準線l上的射影(如圖).由圓錐曲線的共同性質得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準線相離.15.已知兩個力F1,F2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對應向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.16.如果:在10進制中2004=4×100+0×101+0×102+2×103,那么類比:在5進制中數碼2004折合成十進制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.17.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C18.已知P為x24+y29=1,F1,F2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F1,F2為橢圓的左右焦點,∴根據橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:419.四名男生三名女生排成一排,若三名女生中有兩名相鄰,但三名女生不能連排,則不同的排法數有()A.3600B.3200C.3080D.2880答案:由題意知本題需要利用分步計數原理來解,∵三名女生有且僅有兩名相鄰,∴把這兩名女生看做一個元素,與另外一名女生作為兩個元素,有C32A22種結果,把男生排列有A44,把女生在男生所形成的5個空位中排列有A52種結果,共有C32A22A44A52=2880種結果,故選D.20.圓C1:x2+y2-6x+6y-48=0與圓C2:x2+y2+4x-8y-44=0公切線的條數是()
A.0條
B.1條
C.2條
D.3條答案:C21.若雙曲線的漸近線方程為y=±3x,它的一個焦點是(10,0),則雙曲線的方程是______.答案:因為雙曲線的漸近線方程為y=±3x,則設雙曲線的方程是x2-y29=λ,又它的一個焦點是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=122.給出以下命題:(1)若非零向量a與b互為負向量,則a∥b;(2)|a|=0是a=0的充要條件;(3)若|a|=|b|,則a=±b;(4)物理學中的作用力和反作用力互為負向量.其中為真命題的是______.答案:(1)若非零向量a與b互為負向量,根據相反向量的定義可知a∥b,故正確;(2)|a|=0則a=0,a=0則|a|=0,故|a|=0是a=0的充要條件,故正確;(3)若|a|=|b|,則兩向量模等,方向任意,故不正確;(4)物理學中的作用力和反作用力大小相等,方向相反,故互為負向量,故正確故為:(1)(2)(4)23.一個正三棱錐的底面邊長等于一個球的半徑,該正三棱錐的高等于這個球的直徑,則球的體積與正三棱錐體積的比值為()
A.
B.
C.
D.答案:A24.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:225.函數y=(12)x的值域為______.答案:因為函數y=(12)x是指數函數,所以它的值域是(0,+∞).故為:(0,+∞).26.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()
A.橢圓
B.AB所在直線
C.線段AB
D.無軌跡答案:C27.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實數λ的值是______.答案:設等邊三角形ABC的邊長為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+
AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-2228.將一根長為3m的繩子在任意位置剪斷,則剪得兩段的長都不小于1m的概率是()A.14B.13C.12D.23答案:記“兩段的長都不小于1m”為事件A,則只能在中間1m的繩子上剪斷,剪得兩段的長都不小于1m,所以事件A發(fā)生的概率
P(A)=13.故選B29.證明:已知a與b均為有理數,且a和b都是無理數,證明a+b也是無理數.答案:證明:假設a+b是有理數,則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數30.下列各量:①密度
②浮力
③風速
④溫度,其中是向量的個數有()個.A.1B.3C.2D.4答案:根據向量的定義,知道需要同時具有大小和方向兩個要素才是向量,在所給的四個量中,密度只有大小,浮力既有大小又有方向,風速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個數是2個,故選C.31.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α32.某射手射擊所得環(huán)數X的分布列為:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
則此射手“射擊一次命中環(huán)數大于7”的概率為()
A.0.28
B.0.88
C.0.79
D.0.51答案:C33.設集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.34.從單詞“equation”選取5個不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個B.480個C.720個D.840個答案:要選取5個字母時首先從其它6個字母中選3個有C63種結果,再與“qu“組成的一個元素進行全排列共有C63A44=480,故選B.35.A、B是直線l上的兩點,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點間的距離是______答案:CD=CA+AB+BD,|CD|=|
CA+AB+BD|,CD=32+32+42+2×
3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或4336.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()
A.
B.
C.2
D.2
答案:D37.橢圓有這樣的光學性質:從橢圓的一個焦點出發(fā)的光線,經橢圓反射后,反射光線經過橢圓的另一焦點.一水平放置的橢圓形臺球盤,F1,F2是其焦點,長軸長2a,焦距為2c.一靜放在F1點處的小球(半徑忽略不計),受擊打后沿直線運動(不與直線F1F2重合),經橢圓壁反彈后再回到點F1時,小球經過的路程是()
A.4c
B.4a
C.2(a+c)
D.4(a+c)答案:B38.若向量、、滿足++=,=3,=1,=4,則等于(
)
A.-11
B.-12
C.-13
D.-14答案:C39.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結構特征的理解,關注不等式中等號與不等號的關系。40.設全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.41.下列函數中,與函數y=x(x≥0)有相同圖象的一個是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個函數與函數y=x
(x≥0)有相同圖象時,這兩個函數應是同一個函數.A中的函數和函數y=x
(x≥0)的值域不同,故不是同一個函數.B中的函數和函數y=x
(x≥0)具有相同的定義域、值域、對應關系,故是同一個函數.C中的函數和函數y=x
(x≥0)的值域不同,故不是同一個函數.D中的函數和函數y=x
(x≥0)的定義域不同,故不是同一個函數.綜上,只有B中的函數和函數y=x
(x≥0)是同一個函數,具有相同的圖象,故選B.42.把平面上一切單位向量歸結到共同的起點,那么這些向量的終點所構成的圖形是
______.答案:把平面上一切單位向量歸結到共同的起點,那么這些向量的終點到起點的距離都等于1,所以,由圓的定義得,這些向量的終點所構成的圖形是半徑為1的圓.43.為了讓學生更多地了解“數學史”知識,某中學高二年級舉辦了一次“追尋先哲的足跡,傾聽數學的聲音”的數學史知識競賽活動,共有800名學生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學生的成績(得分均為整數,滿分為100分)進行統(tǒng)計.請你根據下面的頻率分布表,解答下列問題:
序號
(i)分組
(分數)本組中間值
(Gi)頻數
(人數)頻率
(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合
計501(1)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);
(2)為鼓勵更多的學生了解“數學史”知識,成績不低于85分的同學能獲獎,請估計在參賽的800名學生中大概有多少同學獲獎?
(3)請根據頻率分布表估計該校高二年級參賽的800名同學的平均成績.答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學生中大概有288名同學獲獎.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計平均成績?yōu)?1分.(12分)44.“a=0”是“復數z=a+bi(a,b∈R)為純虛數”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:依題意,復數z=a+bi(a,b∈R)為純虛數,?a=0且b≠0,∴“a=0”是“復數z=a+bi(a,b∈R)為純虛數”的必要不充分條件,故選B.45.若直線x+y=m與圓x=mcosφy=msinφ(φ為參數,m>0)相切,則m為
______.答案:圓x=mcosφy=msinφ的圓心為(0,0),半徑為m∵直線x+y=m與圓相切,∴d=r即|m|2=m,解得m=2故為:246.已知隨機變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D47.若方程sin2x+4sinx+m=0有實數解,則m的取值范圍是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D48.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.49.圓心既在直線x-y=0上,又在直線x+y-4=0上,且經過原點的圓的方程是______.答案:∵圓心既在直線x-y=0上,又在直線x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圓心坐標為(2,2),∵圓經過原點,∴半徑r=22,故所求圓的方程為(x-2)2+(y-2)2=8.50.從1,2,…,9這九個數中,隨機抽取3個不同的數,則這3個數的和為偶數的概率是()A.59B.49C.1121D.1021答案:基本事件總數為C93,設抽取3個數,和為偶數為事件A,則A事件數包括兩類:抽取3個數全為偶數,或抽取3數中2個奇數1個偶數,前者C43,后者C41C52.∴A中基本事件數為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.第3卷一.綜合題(共50題)1.已知點M(a,b)在直線3x+4y=15上,則a2+b2的最小值為______.答案:a2+b2的幾何意義是到原點的距離,它的最小值轉化為原點到直線3x+4y=15的距離:d=155=3.故為3.2.曲線x=sinθy=sin2θ(θ為參數)與直線y=a有兩個公共點,則實數a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.3.安排6名演員的演出順序時,要求演員甲不第一個出場,也不最后一個出場,則不同的安排方法種數是()
A.120
B.240
C.480
D.720答案:C4.有一段“三段論”推理是這樣的:對于可導函數f(x),如果f'(x0)=0,那么x=x0是函數f(x)的極值點,因為函數f(x)=x3在x=0處的導數值f'(0)=0,所以,x=0是函數f(x)=x3的極值點.以上推理中()
A.大前提錯誤
B.小前提錯誤
C.推理形式錯誤
D.結論正確答案:A5.如圖,已知雙曲線以長方形ABCD的頂點A,B為左、右焦點,且過C,D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為______.答案:由題意可得點OA=OB=2,AC=5設雙曲線的標準方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標準方程是x2-y23=1.故為:x2-y23=16.某批n件產品的次品率為1%,現在從中任意地依次抽出2件進行檢驗,問:
(1)當n=100,1000,10000時,分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)
(2)根據(1),談談你對超幾何分布與二項分布關系的認識.答案:(1)當n=100時,如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產品中次品數為1,正品數是99,從100件產品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當n=1000時,如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產品中次品數為10,正品數是990,從1000件產品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產品中次品數為1000,正品數是9000,從10000件產品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對超幾何分布與二項分布關系的認識:共同點:每次試驗只有兩種可能的結果:成功或失?。煌c:1、超幾何分布是不放回抽取,二項分布是放回抽?。?/p>
2、超幾何分布需要知道總體的容量,二項分布不需要知道總體容量,但需要知道“成功率”;聯系:當產品的總數很大時,超幾何分布近似于二項分布.7.不等式的解集是(
)
A.(-∞,-1)∪(-1,2]
B.[-1,2]
C.(-∞,-1)∪[2,+∞)
D.(-1,2]答案:D8.把函數y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C9.函數f(x)=-2x+1(x∈[-2,2])的最小、最大值分別為()A.3,5B.-3,5C.1,5D.5,-3答案:因為f(x)=-2x+1(x∈[-2,2])是單調遞減函數,所以當x=2時,函數的最小值為-3.當x=-2時,函數的最大值為5.故選B.10.不等式的解集是(
)
A.
B.
C.
D.答案:D11.考慮坐標平面上以O(0,0),A(3,0),B(0,4)為頂點的三角形,令C1,C2分別為△OAB的外接圓、內切圓.請問下列哪些選項是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點的位置如右圖所示,C1,C2為△OAB的外接圓與內切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(32,2),此點在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標為(1,1),此點在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).12.已知△ABC的頂點坐標分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()
A.2
B.6+
C.3+2
D.6+3答案:D13.在邊長為1的正方形中,有一個封閉曲線圍成的陰影區(qū)域,在正方形中隨機的撒入100粒豆子,恰有60粒落在陰影區(qū)域內,那么陰影區(qū)域的面積為______.
答案:設陰影部分的面積為x,由概率的幾何概型知,則60100=x1,解得x=35.故為:35.14.雙曲線x2-4y2=4的兩個焦點F1、F2,P是雙曲線上的一點,滿足·=0,則△F1PF2的面積為()
A.1
B.
C.2
D.答案:A15.已知集合M={0,1},N={2x+1|x∈M},則M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},當x=0時,2x+1=1;當x=1時,2x+1=3,∴N={1,3}則M∩N={1}.故選A.16.若方程Ax+By+C=0表示與兩條坐標軸都相交的直線,則()
A.A≠0B≠0C≠0
B.A≠0B≠0
C.B≠0C≠0
D.A≠0C≠0答案:B17.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點可以構成直角三角形B.A,B,C三點可以構成銳角三角形C.A,B,C三點可以構成鈍角三角形D.A,B,C三點不能構成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點可以構成直角三角形,故選A.18.函數y=()|x|的圖象是()
A.
B.
C.
D.
答案:B19.△ABC中,,若,則m+n=()
A.
B.
C.
D.1答案:B20.直線x+1=0的傾斜角是______.答案:直線x+1=0與x軸垂直,所以直線的傾斜角為90°.故為:90°.21.若直線l經過點M(1,5),且傾斜角為2π3,則直線l的參數方程為______.答案:由于過點(a,b)傾斜角為α的直線的參數方程為x=a+t?cosαy=b+t?sinα(t是參數),∵直線l經過點M(1,5),且傾斜角為2π3,故直線的參數方程是x=1+t?cos2π3y=5+t?sin2π3即x=1-12ty=5+32t(t為參數).故為:x=1-12ty=5+32t(t為參數).22.曲線的參數方程是(t是參數,t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B23.已知一個球與一個正三棱柱的三個側面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.設其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48324.圓心既在直線x-y=0上,又在直線x+y-4=0上,且經過原點的圓的方程是______.答案:∵圓心既在直線x-y=0上,又在直線x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圓心坐標為(2,2),∵圓經過原點,∴半徑r=22,故所求圓的方程為(x-2)2+(y-2)2=8.25.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm26.某班有40名學生,其中有15人是共青團員.現將全班分成4個小組,第一組有學生10人,共青團員4人,從該班任選一個學生代表.在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為()A.415B.514C.14D.34答案:由于所有的共青團員共有15人,而第一小組有4人是共青團員,故在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為415,故選A.27.一個公司共有240名員工,下設一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數是______.答案:每個個體被抽到的概率是
20240=112,那么從甲部門抽取的員工人數是60×112=5,故為:5.28.國旗上的正五角星的每一個頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.29.如圖,AD是圓內接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.30.4個人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據分類計數問題,可以列舉出所有的結果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結果,故為:931.設xi,yi
(i=1,2,…,n)是實數,且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n
i-1(xi-yi)2≥n
i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證
ni=1
yi2-2ni=1
xi?yi≥ni=1
zi2-2ni=1
xi?zi,由于ni=1
yi2=ni=1
zi2,故只需證ni=1
xi?zi≤ni=1
xi?yi
①.而①的左邊為亂序和,右邊為順序和,根據排序不等式可得①成立,故要證的不等式成立.32.對變量x、y有觀測數據(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數據(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()
A.變量x與y正相關,u與v正相關
B.變量x與y正相關,u與v負相關
C.變量x與y負相關,u與v正相關
D.變量x與y負相關,u與v負相關答案:C33.H:x-y+z=2為坐標空間中一平面,L為平面H上的一直線.已知點P(2,1,1)為L上距離原點O最近的點,則______為L的方向向量.答案:∵x-y+z=2為坐標空間中一平面∴平面的一個法向量是n=(1,-1,1)設直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點O最近的點,∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)34.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當的坐標系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標軸建立空間直角坐標系.(如圖所示).設棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設平面AMN的法向量n=(x,y,z)∴令y=2,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省金華市2024年中考數學一模試題含答案
- 開封文化藝術職業(yè)學院《創(chuàng)新與創(chuàng)業(yè)管理A》2023-2024學年第一學期期末試卷
- 江蘇警官學院《現代舞基訓》2023-2024學年第一學期期末試卷
- 吉安職業(yè)技術學院《機器人技術基礎B》2023-2024學年第一學期期末試卷
- 湖南理工學院南湖學院《廣播電視新聞播音與主持》2023-2024學年第一學期期末試卷
- 黑龍江建筑職業(yè)技術學院《CA課件設計》2023-2024學年第一學期期末試卷
- 高考物理總復習《磁場的性質》專項測試卷帶答案
- 重慶對外經貿學院《快速建筑設計》2023-2024學年第一學期期末試卷
- 鎮(zhèn)江市高等??茖W校《食品加工安全控制》2023-2024學年第一學期期末試卷
- 浙江交通職業(yè)技術學院《粉體工程與設備》2023-2024學年第一學期期末試卷
- 《榜樣9》觀后感心得體會四
- 《住院患者身體約束的護理》團體標準解讀課件
- 酒店一線員工績效考核指標體系優(yōu)化研究
- 全面設備管理(TPM)培訓資料-課件
- 高中地理《外力作用與地表形態(tài)》優(yōu)質課教案、教學設計
- 車間生產管理流程圖模板
- 河北省邢臺市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 市場部績效考核表
- 10000中國普通人名大全
- 學霸高中數學高中數學筆記全冊(最終)
- 熱棒的要點及要求
評論
0/150
提交評論