2023年江蘇航運職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年江蘇航運職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年江蘇航運職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年江蘇航運職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年江蘇航運職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年江蘇航運職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數(shù)y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯誤;C、f(x)=x3,其定義域為R,故C錯誤;D、f(x)=ex,其定義域為R,故D錯誤;故選A.2.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設a=2k,b=3k,則c=13k,∴e=ca=132.:132.3.當x∈N+時,用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質得,當x∈N+時,(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.4.圓心在原點且圓周被直線3x+4y+15=0分成1:2兩部分的圓的方程為

______.答案:如圖,因為圓周被直線3x+4y+15=0分成1:2兩部分,所以∠AOB=120°.而圓心到直線3x+4y+15=0的距離d=1532+42=3,在△AOB中,可求得OA=6.所以所求圓的方程為x2+y2=36.故為:x2+y2=365.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機會,應選擇的游戲盤的序號______

答案:(1)游戲盤的中獎概率為

38,(2)游戲盤的中獎概率為

14,(3)游戲盤的中獎概率為

26=13,(4)游戲盤的中獎概率為

13,(1)游戲盤的中獎概率最大.故為:(1).6.已知圓x2+y2=r2在曲線|x|+|y|=4的內部,則半徑r的范圍是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根據(jù)題意畫出圖形,如圖所示:可得曲線|x|+|y|=4表示邊長為42的正方形,如圖ABCD為正方形,x2+y2=r2表示以原點為圓心的圓,過O作OE⊥AB,∵邊AB所在直線的方程為x+y=4,∴|OE|=42=22,則滿足題意的r的范圍是0<r<22.故選A7.曲線xy=1的參數(shù)方程不可能是()

A.

B.

C.

D.答案:B8.過P(-1,1),Q(3,9)兩點的直線的斜率為(

A.2

B.

C.4

D.答案:A9.滿足{1,2}∪A={1,2,3}的集合A的個數(shù)為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數(shù)為4.10.設a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明

方法一

∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥

(·+·+·)2=.∴+≥.方法二

令,則∴左邊=≥=.∴原不等式成立.11.不等式ax2+bx+2>0的解集是(-,),則a+b的值是()

A.10

B.-10

C.14

D.-14答案:D12.設全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當集合C∪A∩B的所有子集個數(shù)最多時,集合B中最多有三個元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個數(shù)為:23=8.故選D.13.下列命題中,正確的是()

A.若a∥b,則a與b的方向相同或相反

B.若a∥b,b∥c,則a∥c

C.若兩個單位向量互相平行,則這兩個單位向量相等

D.若a=b,b=c,則a=c答案:D14.已知一次函數(shù)f(x)=4x+3,且f(ax+b)=8x+7,則a-b=______.答案:∵f(x)=4x+3,f(ax+b)=4(ax+b)+3=4ax+4b+3=8x+7,∴4a=84b+3=7,解得a=2,b=1,∴a-b=1.故為:1.15.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.16.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實數(shù)k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為217.向面積為S的△ABC內任投一點P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因為陰影部分的面積是整個三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.18.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()

A.0

B.-8

C.2

D.10答案:B19.拋物線y=4x2的焦點坐標是______.答案:由題意可知x2=14y∴p=18∴焦點坐標為(0,116)故為(0,116)20.若點(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:321.已知矩形ABCD,R、P分別在邊CD、BC上,E、F分別為AP、PR的中點,當P在BC上由B向C運動時,點R在CD上固定不變,設BP=x,EF=y,那么下列結論中正確的是()A.y是x的增函數(shù)B.y是x的減函數(shù)C.y隨x先增大后減小D.無論x怎樣變化,y是常數(shù)答案:連接AR,如圖所示:由于點R在CD上固定不變,故AR的長為定值又∵E、F分別為AP、PR的中點,∴EF為△APR的中位線,則EF=12AR為定值故無論x怎樣變化,y是常數(shù)故選D22.平面上一動點到兩定點距離差為常數(shù)2a(a>0)的軌跡是否是雙曲線,若a>c是否為雙曲線?答案:由題意,設兩定點間的距離為2c,則2a<2c時,軌跡為雙曲線的一支2a=2c時,軌跡為一條射線2a>2c時,無軌跡.23.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時單調遞增的性質,得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.24.4位學生與2位教師并坐合影留念,針對下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)

(1)教師必須坐在中間;

(2)教師不能坐在兩端,但要坐在一起;

(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學生,有A44種坐法,2位教師坐在一起,將其看成一個整體,可以交換位置,有2種坐法,將這個“整體”插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,則共有2A44A31=144種坐法;(3)先排4位學生,有A44種坐法,教師不能相鄰,將其依次插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,有A32種坐法,則共有A44A32=144種坐法..25.設向量a,b的夾角為60°的單位向量,則向量2a+b的模為()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模為7故選B26.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.27.求證:三個兩兩垂直的平面的交線兩兩垂直.答案:設三個互相垂直的平面分別為α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三個平面的公共點為O,如圖所示:在平面γ內,除點O外,任意取一點M,且點M不在這三個平面中的任何一個平面內,過點M作MN⊥c,MP⊥b,M、P為垂足,則有平面和平面垂直的性質可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.

再由b、c在平面γ內,可得a⊥b,a⊥c.同理可證,c⊥b,c⊥a,從而證得a、b、c互相垂直.28.已知F1、F2為橢圓x225+y29=1的兩個焦點,過F1的直線交橢圓于A、B兩點.若|F2A|+|F2B|=12,則|AB|=______.答案:由橢圓的定義得|AF1|+|AF2|=10|BF1|+|BF2|=10兩式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:829.一射手對靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()

A.2.44

B.3.376

C.2.376

D.2.4答案:C30.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send31.已知點P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當sin(θ+?)=1時,ω=3x+2y的最大值為

11故為11.32.在等腰直角三角形ABC中,若M是斜邊AB上的點,則AM小于AC的概率為()A.14B.12C.22D.32答案:記“AM小于AC”為事件E.在線段AB上截取,則當點M位于線段AC內時,AM小于AC,將線段AB看做區(qū)域D,線段AC看做區(qū)域d,于是AM小于AC的概率為:ACAB=22.故選C.33.用“輾轉相除法”求得和的最大公約數(shù)是(

)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)34.①某尋呼臺一小時內收到的尋呼次數(shù)X;

②長江上某水文站觀察到一天中的水位X;

③某超市一天中的顧客量X.

其中的X是連續(xù)型隨機變量的是()

A.①

B.②

C.③

D.①②③答案:B35.四支足球隊爭奪冠、亞軍,不同的結果有()

A.8種

B.10種

C.12種

D.16種答案:C36.把平面上一切單位向量歸結到共同的起點,那么這些向量的終點所構成的圖形是

______.答案:把平面上一切單位向量歸結到共同的起點,那么這些向量的終點到起點的距離都等于1,所以,由圓的定義得,這些向量的終點所構成的圖形是半徑為1的圓.37.設方程lgx+x=3的實數(shù)根為x0,則x0所在的一個區(qū)間是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分別畫出等式:lgx=3-x兩邊對應的函數(shù)圖象:如圖.由圖知:它們的交點x0在區(qū)間(2,3)內,故選B.38.如圖所示,在Rt△ABC內有一內接正方形,它的一條邊在斜邊BC上,設AB=a,∠ABC=θ

(1)求△ABC的面積f(θ)與正方形面積g(θ);

(2)當θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)

設正方形的邊長為x,則BG=xsinθ,由幾何關系知:∠AGD=θ∴AG=xcosθ

由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4

令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當且僅當t=1即θ=π4時成立)∴當θ=π4時,f(θ)g(θ)的最小值為94.39.設a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,則實數(shù)m,n的值分別為______.答案:因為a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根據(jù)空間向量平行的坐標表示公式,

所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故為:m=12,n=6.40.設z∈C,|z|≤2,則點Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點Z表示的圖形是半徑為2的圓面,故選B41.某海域內有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長軸長為2a,短軸長為2b的橢圓,已知島上甲、乙導航燈的海拔高度分別為h1、h2,且兩個導航燈在海平面上的投影恰好落在橢圓的兩個焦點上,現(xiàn)有船只經(jīng)過該海域(船只的大小忽略不計),在船上測得甲、乙導航燈的仰角分別為θ1、θ2,那么船只已進入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a42.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,抽取了總成績介于350分到650分之間的10000名學生成績,并根據(jù)這10000名學生的總成績畫了樣本的頻率分布直方圖.為了進一步分析學生的總成績與各科成績等方面的關系,要從這10000名學生中,再用分層抽樣方法抽出200人作進一步調查,則總成績在[400,500)內共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B43.一名同學先后投擲一枚骰子兩次,第一次向上的點數(shù)記為x,第二次向上的點數(shù)記為y,在直角坐標系xOy中,以(x,y)為坐標的點落在直線2x+y=8上的概率為()A.16B.112C.536D.19答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的事件是先后擲兩次骰子,共有6×6=36種結果,滿足條件的事件是(x,y)為坐標的點落在直線2x+y=8上,當x=1,y=6;x=2,y=4;x=3,y=2,共有3種結果,∴根據(jù)古典概型的概率公式得到P=336=112,故選B.44.已知橢圓的短軸長等于2,長軸端點與短軸端點間的距離等于5,則此橢圓的標準方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標準方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2=1.45.甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機取出一個球放入乙袋中,充分混合后,再從乙袋中隨機取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.46.用秦九韶算法求多項式f(x)=8x7+5x6+3x4+2x+1,當x=2時的值.答案:根據(jù)秦九韶算法,把多項式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當x=2時,多項式的值為1397.47.例3.設a>0,b>0,解關于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化為ax-2≥bx或ax-2≤-bx,(1)對于不等式ax-2≤-bx,即(a+b)x≤2

因為a>0,b>0即:x≤2a+b.(2)對于不等式ax-2≥bx,即(a-b)x≥2①當a>b>0時,由①得x≥2a-b,∴此時,原不等式解為:x≥2a-b或x≤2a+b;當a=b>0時,由①得x∈?,∴此時,原不等式解為:x≤2a+b;當0<a<b時,由①得x≤2a-b,∴此時,原不等式解為:x≤2a+b.綜上可得,當a>b>0時,原不等式解集為(-∞,2a+b]∪[2a-b,+∞),當0<a≤b時,原不等式解集為(-∞,2a+b].48.引入復數(shù)后,數(shù)系的結構圖為()

A.

B.

C.

D.

答案:A49.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()

A.

B.

C.

D.2答案:A50.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:35第2卷一.綜合題(共50題)1.把函數(shù)y=sin(x-)-2的圖象經(jīng)過按平移得到y(tǒng)=sinx的圖象,則=(

A.

B.

C.

D.答案:A2.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因為已知a、b、c是實數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.3.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.4.函數(shù)y=x2x4+9(x≠0)的最大值為______,此時x的值為______.答案:y=x2x4+9=1x2+9x2≤129=16,當且僅當x2=9x2,即x=±3時取等號.故為:16,

±35.如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內部,點M是BC的中點.

(Ⅰ)證明A,P,O,M四點共圓;

(Ⅱ)求∠OAM+∠APM的大小.答案:證明:(Ⅰ)連接OP,OM.因為AP與⊙O相切于點P,所以OP⊥AP.因為M是⊙O的弦BC的中點,所以OM⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內部,可知四邊形M的對角互補,所以A,P,O,M四點共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.6.下列函數(shù)中,與函數(shù)y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數(shù)y=x的定義域為R,選項中A,D定義域不是R,是A、D不正確.選項C的對應法則不同,C不正確.故選B.7.對于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因為f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因為x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.8.點P(2,5)關于直線x+y=1的對稱點的坐標是(

)。答案:(-4,-1)9.若矩陣滿足下列條件:①每行中的四個數(shù)所構成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為()

A.24

B.48

C.144

D.288答案:C10.函數(shù)y=(43)x,x∈N+是()A.增函數(shù)B.減函數(shù)C.奇函數(shù)D.偶函數(shù)答案:由正整數(shù)指數(shù)函數(shù)不具有奇偶性,可排除C、D;因為函數(shù)y=(43)x,x∈N+的底數(shù)43大于1,所以此函數(shù)是增函數(shù).故選A.11.在△ABC中,DE∥BC,DE將△ABC分成面積相等的兩部分,那么DE:BC=()

A.1:2

B.1:3

C.

D.1:1答案:C12.若關于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。13.已知橢圓的參數(shù)方程為(?為參數(shù)),點M在橢圓上,點O為原點,則當?=時,OM的斜率為()

A.1

B.2

C.

D.2答案:D14.已知三個向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實數(shù)λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實數(shù),,使p=λq+μr,故向量p、q、r共面.15.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個.

A.2

B.3

C.4

D.5答案:D16.因為樣本是總體的一部分,是由某些個體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調查就變成普查了,盡管這樣確實反映了實際情況,但不是統(tǒng)計的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.17.由小正方體木塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小正方體木塊有()

A.6塊

B.7塊

C.8塊

D.9塊答案:B18.經(jīng)過點M(1,1)且在兩軸上截距相等的直線是______.答案:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為x+y=a,把(1,1)代入所設的方程得:a=2,則所求直線的方程為x+y=2;②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x19.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.20.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()

A.31

B.36

C.35

D.34答案:B21.已知橢圓的焦點是F1、F2,P是橢圓上的一個動點,如果延長F1P到Q,使得|PQ|=|PF2|,那么動點Q的軌跡是______.答案:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴動點Q到定點F1的距離等于定長2a,故動點Q的軌跡是圓.故:圓.22.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個數(shù)為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個數(shù)為8.故為:823.用輾轉相除法或者更相減損術求三個數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81

243=81×3+0

則324與243的最大公約數(shù)為81又135=81×1+54

81=54×1+27

54=27×2+0則81與135的最大公約數(shù)為27所以,三個數(shù)324、243、135的最大公約數(shù)為27.另法為所求。24.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:225.平面內有兩個定點F1(-5,0)和F2(5,0),動點P滿足條件|PF1|-|PF2|=6,則動點P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點P的軌跡是以F1、F2為焦點的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動點P的軌跡方程是x29-y216=1(x≥3).故選D.26.若A(x,5-x,2x-1),B(1,x+2,2-x),當||取最小值時,x的值等于(

A.

B.

C.

D.答案:C27.考慮坐標平面上以O(0,0),A(3,0),B(0,4)為頂點的三角形,令C1,C2分別為△OAB的外接圓、內切圓.請問下列哪些選項是正確的?

(1)C1的半徑為2

(2)C1的圓心在直線y=x上

(3)C1的圓心在直線4x+3y=12上

(4)C2的圓心在直線y=x上

(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點的位置如右圖所示,C1,C2為△OAB的外接圓與內切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(32,2),此點在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標為(1,1),此點在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).28.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為

______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c29.若曲線的極坐標方程為ρ=2sinθ+4cosθ,以極點為原點,極軸為x軸正半軸建立直角坐標系,則該曲線的直角坐標方程為______.答案:曲線的極坐標方程為ρ=2sinθ+4cosθ,即ρ2=2ρsinθ+4ρcosθ,即x2+y2=2y+4x,化簡為(x-2)2+(y-1)2=5,故為(x-2)2+(y-1)2=5.30.直線和圓交于兩點,則的中點

坐標為(

)A.B.C.D.答案:D解析:,得,中點為31.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個虛根為-1-5±10-25i4,-1+5±10+25i4中的一個故為:-1-5+10-25i4.32.從5名男學生、3名女學生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當包括兩女一男時,有C32C51=15種結果,當包括兩男一女時,有C31C52=30種結果,∴根據(jù)分類加法得到共有15+30=45故選A.33.已知點P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當sin(θ+?)=1時,ω=3x+2y的最大值為

11故為11.34.設是定義在正整數(shù)集上的函數(shù),且滿足:“當成立時,總可推出成立”.那么,下列命題總成立的是A.若成立,則當時,均有成立B.若成立,則當時,均有成立C.若成立,則當時,均有成立D.若成立,則當時,均有成立答案:D解析:若成立,依題意則應有當時,均有成立,故A不成立,若成立,依題意則應有當時,均有成立,故B不成立,因命題“當成立時,總可推出成立”.“當成立時,總可推出成立”.因而若成立,則當時,均有成立,故C也不成立。對于D,事實上,依題意知當時,均有成立,故D成立。35.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個小組分別獨立開展該種子的發(fā)芽試驗,每次試驗種一粒種子,假定某次試驗種子發(fā)芽,則稱該次試驗是成功的,如果種子沒有發(fā)芽,則稱該次試驗是失敗的.

(1)第一個小組做了三次試驗,求至少兩次試驗成功的概率;

(2)第二個小組進行試驗,到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個小組做了三次試驗,至少兩次試驗成功的概率是P(A)=·+=.(2)第二個小組在第4次成功前,共進行了6次試驗,其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.36.若一元二次方程ax2+2x+1=0有一個正根和一個負根,則有

A.a(chǎn)<0

B.a(chǎn)>0

C.a(chǎn)<-1

D.a(chǎn)>1答案:A37.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send38.函數(shù)f(x)=-2x+1(x∈[-2,2])的最小、最大值分別為()A.3,5B.-3,5C.1,5D.5,-3答案:因為f(x)=-2x+1(x∈[-2,2])是單調遞減函數(shù),所以當x=2時,函數(shù)的最小值為-3.當x=-2時,函數(shù)的最大值為5.故選B.39.在極坐標系中,點(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標系中,點(2

,

π6)化為直角坐標為(3,1),直線ρsinθ=2化為直角坐標方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(2

π6)到直線ρsinθ=2的距離1,故為:1.40.回歸直線方程必定過點()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過這組數(shù)據(jù)的樣本中心點,∴線性回歸方程y=bx+a表示的直線必經(jīng)過(.x,.y).故選D.41.從拋物線y2=4x上一點P引拋物線準線的垂線,垂足為M,且|PM|=5,設拋物線的焦點為F,則△MPF的面積為()

A.6

B.8

C.10

D.15答案:C42.已知點P1的球坐標是P1(4,,),P2的柱坐標是P2(2,,1),則|P1P2|=()

A.

B.

C.

D.4答案:A43.求下列函數(shù)的定義域及值域.

(1)y=234x+1;

(2)y=4-8x.答案:(1)要使函數(shù)y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數(shù)的定義域為{x|x≠-14}.設y=2u,u=34x+1≠0,則u>0,由函數(shù)y=2u,得y≠20=1,所以函數(shù)的值域為{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數(shù)的定義域為{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函數(shù)的值域為[0,2).44.如圖,l1、l2、l3是同一平面內的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點分別在l1、l2、l3上,則△ABC的邊長是()

A.2

B.

C.

D.

答案:D45.意大利數(shù)學家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應變第個月兔子的對數(shù)(的舊值),變量的新值應變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準,構造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結果.流程圖和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND46.下圖是由哪個平面圖形旋轉得到的(

)答案:A47.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側棱長為4,E、F分別為棱AB、BC的中點.

(1)求證:平面B1EF⊥平面BDD1B1;

(2)求點D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)

建立如圖所示的空間直角坐標系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)

由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.48.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點,n∈N*.已知OP1=(2,0),則OP2011的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構成以0為首項,2為公差的等差數(shù)列∴OP2011的坐標為(2,4020)故為:(2,4020)49.已知一種材料的最佳加入量在110g到210g之間.若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:171.8或148.250.設向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,則θ=______.答案:若a∥b,則sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故為:π4.第3卷一.綜合題(共50題)1.高二年級某班有男生36人,女生28人,從中任選一位同學為數(shù)學科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學為數(shù)學科代表,則不同選法的種數(shù)64,故選C.2.已知向量a與向量b的夾角為120°,若向量c=a+b,且a⊥c,則|a||b|的值為______.答案:由題意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故為:123.設全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.4.如果橢圓x225+y216=1上一點P到焦點F1的距離為6,則點P到另一個焦點F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.5.直線l1過點P(0,-1),且傾斜角為α=30°.

(I)求直線l1的參數(shù)方程;

(II)若直線l1和直線l2:x+y-2=0交于點Q,求|PQ|.答案:(Ⅰ)直線l1的參數(shù)方程為x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t為參數(shù))

(Ⅱ)將上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根據(jù)t的幾何意義得出|PQ|=|t|=3(3-1)6.運行如圖的程序,將自然數(shù)列0,1,2,…依次輸入作為a的值,則輸出結果x為______.

答案:當n=2時,x=5×6+0=30,當n=1時,x=30×6+1=181,當n=0時,x=181×6+2=1088,故為:10887.在空間坐標中,點B是A(1,2,3)在yOz坐標平面內的射影,O為坐標原點,則|OB|等于()

A.

B.

C.2

D.答案:B8.已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-4)2=1上一個動點,那么點P到點Q的距離與點P到拋物線的準線距離之和的最小值是()

A.2-1

B.2-2

C.-1

D.-2答案:C9.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側面積S=π×2×4=8πcm2.故為8π.10.將命題“正數(shù)a的平方大于零”改寫成“若p,則q”的形式,并寫出它的逆命題、否命題與逆否命題.答案:原命題可以寫成:若a是正數(shù),則a的平方大于零;逆命題:若a的平方大于零,則a是正數(shù);否命題:若a不是正數(shù),則a的平方不大于零;逆否命題:若a的平方不大于零,則a不是正數(shù).11.如圖所示的程序框圖,運行相應的程序,若輸出S的值為254,則判斷框①中應填入的條件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出滿足條件S=2+22+23+…+2n=126時S的值∵2+22+23+…+27=254,故最后一次進行循環(huán)時n的值為7,故判斷框中的條件應為n≤7.故選C.12.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點,則實數(shù)m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C13.如果雙曲線的半實軸長為2,焦距為6,那么該雙曲線的離心率是()

A.

B.

C.

D.2答案:C14.某?,F(xiàn)有高一學生210人,高二學生270人,高三學生300人,學校學生會用分層抽樣的方法從這三個年級的學生中隨機抽取n名學生進行問卷調查,如果已知從高一學生中抽取的人數(shù)為7,那么從高三學生中抽取的人數(shù)應為()

A.10

B.9

C.8

D.7答案:A15.如果隨機變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()

A.0.1

B.0.2

C.0.3

D.0.4答案:A16.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,則()

A.∠PCB=∠B

B.∠PAC=∠P

C.∠PCA=∠B

D.∠PAC=∠BCA答案:C17.求過點A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.18.某個命題與正整數(shù)n有關,如果當n=k(k∈N+)時命題成立,那么可推得當n=k+1時命題也成立.

現(xiàn)已知當n=7時該命題不成立,那么可推得()

A.當n=6時該命題不成立

B.當n=6時該命題成立

C.當n=8時該命題不成立

D.當n=8時該命題成立答案:A19.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b

由|a|=|b|=2,∠AOB=60°,得:a2=b2=

4,a?b

=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π620.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進行排列,有A22種排法,再把A、B看成一個元素,和E進行排列,有A22種排法,最后再把C、D插入進去,有A23種排法,根據(jù)分步計數(shù)原理可得A22A22A23=24種排法.故為:2421.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C22.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.23.已知:如圖,CD是⊙O的直徑,AE切⊙O于點B,DC的延長線交AB于點A,∠A=20°,則

∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.24.(文)橢圓的一個焦點與短軸的兩端點構成一個正三角形,則該橢圓的離心率為()

A.

B.

C.

D.不確定答案:C25.直線l過拋物線y2=2px(p>0)的焦點,且與拋物線交于A、B兩點,若線段AB的長是8,AB的中點到y(tǒng)軸的距離是2,則此拋物線方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:設A(x1,y1),B(x2,y2),根據(jù)拋物線定義,x1+x2+p=8,∵AB的中點到y(tǒng)軸的距離是2,∴x1+x22=2,∴p=4;∴拋物線方程為y2=8x故選B26.在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內取值的概率為0.6,則ξ在(0,1)內取值的概率為()

A.0.1

B.0.2

C.0.3

D.0.4答案:C27.設直線l過點P(-3,3),且傾斜角為56π

(1)寫出直線l的參數(shù)方程;

(2)設此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點,求|PA|?|PB|答案:(1)由于過點(a,b)傾斜角為α的直線的參數(shù)方程為

x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因為點A,B都在直線l上,所以可設它們對應的參數(shù)為t1和t1,則點A,B的坐標分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因為t1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.28.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.29.已知直線l過點P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點M(1,2,3),則平面α的法向量不可能是()

A.(1,-4,2)

B.(,-1,)

C.(-,-1,-)

D.(0,-1,1)答案:D30.以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形只能是()A.平行四邊形B.矩形C.菱形D.梯形答案:∵數(shù)集A={a,b,c,d}中的四個元素互不相同,∴以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形,四條邊不相等∴四邊形只可能是梯形故選D.31.四支足球隊爭奪冠、亞軍,不同的結果有()

A.8種

B.10種

C.12種

D.16種答案:C32.方程組的解集是()

A.{-1,2}

B.(-1,2)

C.{(-1,2)}

D.{(x,y)|x=-1或y=2}答案:C33.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關,u

與v

正相關

B.變量x

與y

負相關,u

與v

正相關

C.變量x

與y

正相關,u

與v

負相關

D.變量x

與y

負相關,u

與v

負相關答案:B34.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個向量的兩個向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯;②不相等的向量也可能不平行;故錯;③相等向量一定共線;正確;④共線向量不一定相等;故錯;⑤長度相等的向量方向相反時不是相等向量;故錯;⑥平行于零向量的兩個向量是不一定是共線向量,故錯.其中正確的命題是③.故為:③.35.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關系是:相交或相切.故為:相交或相切.36.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3537.底面直徑和高都是4cm的圓柱的側面積為______cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長是2π×2=4π∴圓柱的側面積是4π×4=16π,故為:16π.38.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論