版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1-0StudyoftheBEM
邊界元法學(xué)習(xí)成員:高成路、郭焱旭、梅潔、李銘、金純、劉克奇、匡偉、高松、李崴1-1巖土工程的數(shù)值方法工程問題數(shù)學(xué)模型偏微分方程的邊值問題或初值問題邊界積分方程問題解析方法數(shù)值方法解析方法數(shù)值方法FDMFEMEFM其它BEM其它KeywordsaboutBEMCharacteradvantage/disadvantageApplicationandtransformation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-2StudyoftheBEMKeywords1-3applicability適用性
stressanddeformationanalysis應(yīng)力和變形分析
integralstatement
功互等定理
kernels核函數(shù)quadraticelements二次單元
discretization離散化
approximation近似值shapefunctions形函數(shù)
intrinsiccoordinate本征坐標(biāo)Gaussianquadrature高斯正交
singularity奇異性,奇異點(diǎn)
CauchyPrincipalValue柯西主值.variationalformulation變分公式化,變分表述1-4numericalintegration數(shù)值積分
sparseandsymmetricmatrices稀疏對稱矩陣
fullypopulatedandasymmetricmatrices全充填非對稱矩陣Weightedresidualprinciple加權(quán)余量法
isoparametricelements等參單元undergroundexcavations地下開挖
fracturingprocesses破裂過程
In-situstress原位應(yīng)力
permeabilitymeasurements滲透性觀測coupledthermo-mechanical熱力耦合materialheterogeneity材料各向異性Somigliana’sidentity索米利亞納恒等式hybridmodel混合模型Keywords1-5damageevolutionprocesses損傷演化過程
homogeneousandlinearlyelasticbodies.各向同性線彈性體sourcedensities原密度
fractureanalysis斷裂分析
fieldpoint場點(diǎn)globalstiffnessmatrices整體剛度矩陣
normalderivative法向?qū)?shù)
fracturepropagationproblems裂隙傳播問題boreholestability鉆孔穩(wěn)定性
rockspalling巖石開裂
stressintensityfactors(SIF)應(yīng)力強(qiáng)度因子
maximumtensilestrength最大抗拉強(qiáng)度microscopic微觀的Keywords1-6heatgradients熱力梯度
sharpcorners鈍化邊角
degreesoffreedom自由度
potentialfunction勢函數(shù)
meshlesstechnique無單元技術(shù)
movingleastsquares移動最小二乘法simplificationoftheintegration積分簡化
leastsquaremethod最小二乘法analyticalintegrationofdomainintegrals.積分域的解析解Fourierexpansionofintegrandfunctions.被積函數(shù)的傅里葉展開higherorderfundamentalsolutions.高階基本解theDualReciprocityMethod(DRM).雙重互易法KeywordsKeywordsaboutBEMCharacteradvantage/disadvantageApplicationandtransformation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-7StudyoftheBEMBasicconcepts1-8UnliketheFEMandFDMmethods,theBEMapproachinitiallyseeksaweaksolutionatthegloballevelthroughanintegralstatement,basedonBetti’sreciprocaltheoremandSomigliana’sidentity.Foralinearelasticityproblemwithdomain?;boundaryΓofunitoutwardnormalvectorn?
,andconstantbodyforcef?,forexample,theintegralstatementiswrittenas
(8)ThesolutionoftheintegralEq.(8)requiresthefollowingsteps:1-9(1)DiscretizationoftheboundaryΓwithafinitenumberofboundaryelements.Basicconcepts
(9)1-10(2)Approximationofthesolutionoffunctionslocallyatboundaryelementsby(trial)shapefunctions,inasimilarwaytothatusedforFEM.Thedisplacementandtractionfunctionswithineachelementarethenexpressedasthesumoftheirnodalvaluesoftheelementnodes:Basicconcepts
(10)1-11SubstitutionofEqs.(10)into(9)andforEq.(8)canbewritteninmatrixformasBasicconcepts
(11)
(12)1-12(3)EvaluationoftheintegralsTij,UijandBiwithpointcollocationmethodbysettingthesourcepointPatallboundarynodessuccessively.(4)Incorporationofboundaryconditionsandsolution.IncorporationoftheboundaryconditionsintothematrixEq.(12)willleadtofinalmatrixequationBasicconcepts
(14)1-13(5)Evaluationofdisplacementsandstressesinsidethedomain.Forpracticalproblems,itisoftenthestressesanddisplacementsatsomepointsinsidethedomainofinterestthathavespecialsignificance.UnliketheFEMinwhichthedesireddataareautomaticallyproducedatallinteriorandboundarynodes,whethersomeofthemareneededornot,inBEMthedisplacementandstressvaluesatanyinteriorpoint,P,mustbeevaluatedseparatelybyBasicconcepts
(16)(15)KeywordsaboutBEMCharacteradvantage/disadvantageApplicationandtransformation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-14StudyoftheBEM1-15ThedevelopmentofBEMIn1963,JaswonandSymmgavetheboundaryintegralequationmethodforsolvingpotentialproblems.In1967,RizzoandCrusegotthebreakthroughforstressanalysisinsolids.In1978,Crusestudiedforfracturemechanicsapplications,basedonBetti’sreciprocaltheorem(Betti,1872)andSomigliana’sidentityinelasticitytheory(Somigliana,1885).In1977,BrebbiaandDominguezwrittenthebasicequationsusingtheweightedresidualprinciple.Watson(1976)gavetheintroductionofisoparametricelementsusingdifferentordersofshapefunctionsinthesamefashionasthatinFEM,greatlyenhancedtheBEM’sapplicabilityforstressanalysisproblems.1-16CrouchandFairhurst(1973),BradyandBray(1978)takenmostnotableoriginaldevelopmentsofBEMapplicationinthefieldofrockmechanics.Intheearly80s,PanandMaier(1997),Elzein(2000)andGhassemistartedtoconcernBEMformulationsforcoupledthermo-mechanicalandhydro-mechanicalprocesses.KuriyamaandMizuta(1993),Kuriyama(1995)andCayolandCornet(1997)reported3-DapplicationsduetotheBEM’sadvantageinreducingmodeldimensions,,especiallyusingDDMforstressanddeformationanalysis.ThedevelopmentofBEMKeywordsaboutBEMCharacteradvantage/disadvantageApplicationandtransformation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-17StudyoftheBEM1-18advantageThemainadvantageoftheBEMisthereductionofthecomputationalmodeldimensionbyone,withmuchsimplermeshgenerationandthereforeinputdatapreparation,comparedwithfulldomaindiscretizationmethodssuchastheFEMandFDM.TheBEMisoftenmoreaccuratethantheFEMandFDM,duetoitsdirectintegralformulation.優(yōu)點(diǎn):降低求解問題的維數(shù),3D問題變?yōu)?D問題,2D變?yōu)?D問題.具有較高的精度,原因:僅僅對邊界進(jìn)行離散,域內(nèi)點(diǎn)的值采用邊界上的已知量計算得到.1-19disadvantagetheBEMisnotasefficientastheFEMindealingwithmaterialheterogeneity,becauseitcannothaveasmanysub-domainsaselementsintheFEM.TheBEMisalsonotasefficientastheFEMinsimulatingnon-linearmaterialbehaviour,suchasplasticityanddamageevolutionprocesses,becausedomainintegralsareoftenpresentedintheseproblems.KeywordsaboutBEMCharacteradvantage/disadvantageApplicationandalternativeformulation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-20StudyoftheBEM1-21ApplicationofBEM—FractureanalysiswithBEMToapplystandarddirectBEMforfractureanalysis,thefracturesmustbeassumedtohavetwooppositesurfaces,exceptattheapexofthefracturetipwherespecialsingulartipelementsmustbeused.DenoteΓcasthepathofthefracturesinthedomain?withitstwooppositesurfacesrepresentedbyΓc+andΓc-,respectively,Somigliana’sidentity(whenthefieldpointisontheboundary)canbewrittenas
(17)1-22TwonewtechniqueswereproposedforfractureanalysiswithBEM.ThefirstoneisDualBoundaryElementMethod(DBEM),whichwasfirstpresentedbyPortela(1992),andwasextendedto3-DcrackgrowthproblemsbyMiandAliabadi(1992,1994).Theessenceofthistechniqueistoapplydisplacementboundaryequationsatonesurfaceofafractureelementandtractionboundaryequationsatitsoppositesurface,althoughthetwoopposingsurfacesoccupypracticallythesamespaceinthemodel.Thegeneralmixedmodefractureanalysiscanbeperformednaturallyinasingledomain.DBEM—FractureanalysiswithBEM1-23ThesecondoneisDDM.TheDDMhasbeenwidelyappliedtosimulatefracturingprocessesinfracturemechanicsingeneralandinrockfracturepropagationproblemsinparticularduetotheadvantagethatthefracturescanberepresentedbysinglefractureelementswithoutneedforseparaterepresentationoftheirtwooppositesurfaces,asshouldbedoneinthedirectBEMsolutions.DDM—FractureanalysiswithBEM1-24ApplicationofBEM—FractureanalysiswithBEMButtherearestillgreatboundednessinanalyzingfracturingprocessesusingBEM,especiallyforrockmechanicsproblems.Ontheonehand,whathappensexactlyatthefracturetipsinrocksstillremainstobeadequatelyunderstood,Ontheotherhand,complexnumericalmanipulationsarestillneededforre-meshingfollowingthefracturegrowthprocesssothatthetipelementsareaddedtowherenewfracturetipsarepredicted.Duetotheabovedifficulties,fracturegrowthanalysesinrockmechanicshavenotbeenwidelyapplied.KeywordsaboutBEMCharacteradvantage/disadvantageAlternativeformulation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-25StudyoftheBEM1-26AlternativeformulationsassociatedwithBEMThestandardBEM,DBEMandDDMaspresentedabovehaveacommonfeature:thefinalcoefficientmatricesoftheequationsarefullypopulatedandasymmetric,duetothetraditionalnodalcollocationtechnique.Thismakesthestorageoftheglobalcoefficientmatrixandsolutionofthefinalequationsystemlessefficient,comparedwithFEM.Andthismethodneedsspecialtreatmentfortheproblemwithsharpcornersontheboundarysurfaces(curves)oratthefractureintersections,andartificialcornersmoothing,additionalnodesorspecialcornerelementsareusuallythetechniquesappliedtosolvethisparticulardifficulty.1-27GalerkinBoundaryElementMethodTheGBEMproducesasymmetriccoefficientmatrixbymultiplyingthetraditionalboundaryintegralbyaweightedtrailfunctionandintegratesitwithrespecttothesourcepointontheboundaryforasecondtime,inaGalerkinsenseofweightedresidualformulation.
(19)1-28TheGBEMisanattractiveapproachduetothesymmetryofitsfinalsystemequation,whichpavesthewayforthevariationalformulationofBEMforsolvingnon-linearproblems.GalerkinBoundaryElementMethod1-29BoundaryContourMethodTheBoundaryContourMethod(BCM)involvesrearrangingthestandardBEMintegralEq.(8)sothatthedifferenceofthetwointegralsappearingontheright-handsideofEq.(8)canberepresentedbyavectorfunctionFi=Uij*tj–tij*ujwhichisdivergencefree
(8)(22)1-30TheBCMapproachisattractivemainlybecauseofitsfurtherreductionofcomputationalmodeldimensionsandsimplificationoftheintegration.Thesavingsinpreprocessingofthesimulationsareclear.Treatmentoffracturesandmaterialnon-homogeneityhasnotbeenstudiedinBCM;thesemaylimititsapplicationstorockmechanicsproblemsconsideringthepresentstate-ofthe-art.BoundaryContourMethod1-31BoundaryNodeMethodThemethodisacombinationoftraditionalBEMwithameshlesstechniqueusingthemovingleastsquaresforestablishingtrialfunctionswithoutanexplicitmeshofboundaryelements.Itfurthersimplifiesthemeshgenerationtasks.Itsapplicationsconcentrateonshapesensitivityanalysisatpresentandsolutionofpotentialproblems,butcanbeextendedtogeneralgeom
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 記錄片制作合同協(xié)議2025年
- 2025年煙花爆竹安全買賣合同
- 牙齒矯正技術(shù)課程設(shè)計
- 智能控制理論課程設(shè)計
- 小班課程設(shè)計制作幼兒園
- 文字排版高階課程設(shè)計
- 建設(shè)工程造價咨詢合同示范文本2025年
- 機(jī)電液課程設(shè)計小結(jié)
- 鋁塑窗施工合同
- 股權(quán)收購意向合同書2025年
- 【MOOC】電子技術(shù)實(shí)驗(yàn)-北京科技大學(xué) 中國大學(xué)慕課MOOC答案
- 期末 (試題) -2024-2025學(xué)年人教PEP版英語五年級上冊
- 智慧傳承-黎族船型屋智慧樹知到答案2024年海南師范大學(xué)
- 2024年廣東省公需課《百縣千鎮(zhèn)萬村高質(zhì)量發(fā)展工程與城鄉(xiāng)區(qū)域協(xié)調(diào)發(fā)展》考試答案
- 2024年海南省財金集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- (2024年)傳染病培訓(xùn)課件
- 2023年汕頭市中小學(xué)教學(xué)研究中心招聘專職教研員考試真題及答案
- (精選)無菌檢查法
- 說一不二_《說一不二》相聲劇本
- 某電鍍車間廠區(qū)的供暖與通風(fēng)設(shè)計工業(yè)通風(fēng)課程設(shè)計word格式
- CRH3動車組_空調(diào)系統(tǒng)
評論
0/150
提交評論