版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年柳州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知點P的坐標為(3,4,5),試在空間直角坐標系中作出點P.答案:由P(3,4,5)可知點P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以O(shè)A,OB為鄰邊的矩形OACB的頂點C是點P在xOy坐標平面上的射影C(3,4,0).過C作直線垂直于xOy坐標平面,并在此直線的xOy平面上方截取5個單位,得到的就是點P.2.用行列式討論關(guān)于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當m≠-1,m≠1時,D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當m=-1時,D=0,Dx≠0,方程組無解;…(2分)(3)當m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)3.試指出函數(shù)y=3x的圖象經(jīng)過怎樣的變換,可以得到函數(shù)y=(13)x+1+2的圖象.答案:把函數(shù)y=3x的圖象經(jīng)過3次變換,可得函數(shù)y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對稱y=(13)x左移一個單位y=(13)x+1上移2個單位y=(13)x+1+2.4.函數(shù)y=ax的反函數(shù)的圖象過點(9,2),則a的值為______.答案:依題意,點(9,2)在函數(shù)y=ax的反函數(shù)的圖象上,則點(2,9)在函數(shù)y=ax的圖象上將x=2,y=9,代入y=ax中,得9=a2解得a=3故為:3.5.直線4x-3y+5=0與直線8x-6y+5=0的距離為______.答案:直線4x-3y+5=0即8x-6y+10=0,由兩平行線間的距離公式得:直線4x-3y+5=0(8x-6y+10=0)與直線8x-6y+5=0的距離是
|10-5|62+82=12,故為:12.6.(理)
設(shè)O為坐標原點,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點Q在直線OP上運動,則當QA?QB取得最小值時,點Q的坐標為______.答案:∵OP=(1,1,2),點Q在直線OP上運動,設(shè)OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當λ=43時,QA?QB取得最小值.此時Q的坐標為(43,43,83)故為:(43,43,83)7.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,則()
A.∠PCB=∠B
B.∠PAC=∠P
C.∠PCA=∠B
D.∠PAC=∠BCA答案:C8.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設(shè)半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因為10=2r+l≥22rl,所以rl≤252,所以s≤254故選B9.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.10.假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進行實驗.利用隨機數(shù)表抽取種子時,先將850顆種子按001,002,…,850進行編號,如果從隨機數(shù)表第8行第2列的數(shù)3開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.
(下面摘取了隨機數(shù)表第7行至第9行)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
83
92
12
06
76
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38
15
51
00
13
42
99
66
02
79
54.答案:第8行第2列的數(shù)3開始向右讀第一個小于850的數(shù)字是301,第二個數(shù)字是637,也符合題意,第三個數(shù)字是859,大于850,舍去,第四個數(shù)字是169,符合題意,第五個數(shù)字是555,符合題意,故為:301,637,169,55511.若直線x-y-1=0與直線x-ay=0的夾角為,則實數(shù)a等于()
A.
B.0
C.
D.0或答案:D12.如圖,中心均為原點O的雙曲線與橢圓有公共焦點,M,N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M,N是雙曲線的兩頂點,M,O,N將橢圓長軸四等分∴橢圓的長軸長是雙曲線實軸長的2倍∵雙曲線與橢圓有公共焦點,∴雙曲線與橢圓的離心率的比值是2故選B.13.拋物線y=ax2(其中a>0)的焦點坐標是(
)
A.(,0)
B.(0,)
C.(,0)
D.(0,)答案:D14.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標準方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標準方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.15.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.16.已知圓錐的母線長為5,底面周長為6π,則圓錐的體積是______.答案:圓錐的底面周長為6π,所以圓錐的底面半徑為3;圓錐的高為4所以圓錐的體積為13×π32×4=12π故為12π.17.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,則OE=______(用a,b,c表示)答案:在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故為:12a+14b+14c.18.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:
則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對應(yīng)的四邊形是一個有一組鄰邊相等的平行四邊形,∴這里是一個菱形,②處的圖形是一個有一條腰和底邊垂直的梯形,∴②處是一個直角梯形,故為:菱形;直角梯形.19.在空間直角坐標系O-xyz中,點P(4,3,7)關(guān)于坐標平面yOz的對稱點的坐標為______.答案:設(shè)所求對稱點為P'(x,y,z)∵關(guān)于坐標平面yOz的對稱的兩個點,它們的縱坐標、豎坐標相等,而橫坐標互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標平面yOz的對稱點的坐標為P'(-4,3,7)故為:(-4,3,7)20.已知的單調(diào)區(qū)間;
(2)若答案:(1)(2)證明略解析:(1)對已知函數(shù)進行降次分項變形
,得,(2)首先證明任意事實上,而
.21.已知二次函數(shù)f(x)=x2+bx+c,f(0)<0,則該函數(shù)零點的個數(shù)為()
A.1
B.2
C.3
D.0答案:B22.若關(guān)于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.
(1)方程兩根都大于1;
(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。23.直線(t為參數(shù))被圓x2+y2=9截得的弦長為()
A.
B.
C.
D.答案:B24.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D25.在平面直角坐標系中,橫坐標、縱坐標均為有理數(shù)的點稱為有理點.試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過點M(2,1),則此直線不能經(jīng)過兩個有理點.答案:證明:假設(shè)此直線上有兩個有理點A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過四則運算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過兩個有理點.26.為了調(diào)查甲、乙兩個網(wǎng)站受歡迎的程度,隨機選取了14天,統(tǒng)計上午8:00-10:00間各自的點擊量,得如下所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖:
(1)甲、乙兩個網(wǎng)站點擊量的極差,中位數(shù)分別是多少?
(2)甲網(wǎng)站點擊量在[10,40]間的頻率是多少?(結(jié)果用分數(shù)表示)
(3)甲、乙兩個網(wǎng)站哪個更受歡迎?并說明理由。答案:解:(1)甲網(wǎng)站的極差為73-8=65,乙網(wǎng)站的極差為71-5=66;甲網(wǎng)站的中位數(shù)是56.5,乙網(wǎng)站的中位數(shù)是36.5。(2)甲網(wǎng)站點擊量在[10,40]間的頻率是;(3)甲網(wǎng)站的點擊量集中在莖葉圖的下方,而乙網(wǎng)站的點擊量集中在莖葉圖的上方,從數(shù)據(jù)的分布情況來看,甲網(wǎng)站更受歡迎。27.甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機取出一個球放入乙袋中,充分混合后,再從乙袋中隨機取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.28.某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小球的抽獎箱中,每次取出一球記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6則中一等獎,等于5中二等獎,等于4或3中三等獎.
(1)求中三等獎的概率;
(2)求中獎的概率.答案:(1)設(shè)“中三等獎”為事件A,“中獎”為事件B,從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個小球號碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個小球號相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎的概率為716;(2)兩個小球號碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)兩個小球號碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎的概率為:58.29.已知△ABC的頂點坐標為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點為BC邊上的三等分點則D點分線段BC所成的比為12則易求出D點坐標為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:3230.已知=1-ni,其中m,n是實數(shù),i是虛數(shù)單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C31.如圖,正方體ABCD-A1B1C1D1的棱長為1.
(1)求A1C與DB所成角的大小;
(2)求二面角D-A1B-C的余弦值;
(3)若點E在A1B上,且EB=1,求EC與平面ABCD所成角的大?。鸢福海?)如圖建立空間直角坐標系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.32.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.33.給出下列結(jié)論:
(1)兩個變量之間的關(guān)系一定是確定的關(guān)系;
(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;
(3)回歸分析是對具有函數(shù)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法;
(4)回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法.
以上結(jié)論中,正確的有幾個?()
A.1
B.2
C.3
D.4答案:A34.集合{x∈N*|
12
x
∈Z}中含有的元素個數(shù)為()
A.4
B.6
C.8
D.12答案:B35.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,則全班學(xué)生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:236.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時,盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.37.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進行檢測,這種抽樣方法是()
A.簡單隨機抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.其它抽樣方法答案:B38.在下列4個命題中,是真命題的序號為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個內(nèi)角相等.
A.①
B.①②
C.①②③
D.①②④答案:D39.如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AP=5,PC=3,DP=5,則AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1040.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據(jù)題意可知:當(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據(jù)勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.41.平面ABCD中,點A坐標為(0,1,1),點B坐標為(1,2,1),點C坐標為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應(yīng)與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.42.在直角坐標系xoy
中,已知曲線C1:x=t+1y=1-2t(t為參數(shù))與曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0
)
有一個公共點在X軸上,則a等于______.答案:曲線C1:x=t+1y=1-2t(t為參數(shù))化為普通方程:2x+y-3=0,令y=0,可得x=32曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0
)化為普通方程:x2a2+y29=1∵兩曲線有一個公共點在x軸上,∴94a2=1∴a=32故為:3243.集合A={一條邊長為2,一個角為30°的等腰三角形},其中的元素個數(shù)為()A.2B.3C.4D.無數(shù)個答案:由題意,兩腰為2,底角為30°;兩腰為2,頂角為30°;底邊為2,底角為30°;底邊為2,頂角為30°.∴共4個元素,故選C.44.已知球的表面積等于16π,圓臺上、下底面圓周都在球面上,且下底面過球心,圓臺的軸截面的底角為π3,則圓臺的軸截面的面積是()A.9πB.332C.33D.6答案:設(shè)球的半徑為R,由題意4πR2=16,R=2,圓臺的軸截面的底角為π3,可得圓臺母線長為2,上底面半徑為1,圓臺的高為3,所以圓臺的軸截面的面積S=12(2+4)×3=33故選C45.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復(fù)數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.46.圓心在原點且圓周被直線3x+4y+15=0分成1:2兩部分的圓的方程為
______.答案:如圖,因為圓周被直線3x+4y+15=0分成1:2兩部分,所以∠AOB=120°.而圓心到直線3x+4y+15=0的距離d=1532+42=3,在△AOB中,可求得OA=6.所以所求圓的方程為x2+y2=36.故為:x2+y2=3647.已知隨機變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()
A.
B.
C.
D.答案:A48.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1
200人,女學(xué)生1
000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19249.不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A50.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.第2卷一.綜合題(共50題)1.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C2.A、B是直線l上的兩點,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點間的距離是______答案:CD=CA+AB+BD,|CD|=|
CA+AB+BD|,CD=32+32+42+2×
3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或433.若函數(shù)f(x)=loga(x+b)的圖象如圖,其中a,b為常數(shù).則函數(shù)g(x)=ax+b的大致圖象是(
)
答案:D解析:試題分析:解:由函數(shù)f(x)=loga(x+b)的圖象為減函數(shù)可知0<a<1,f(x)=loga(x+b)的圖象由f(x)=logax向左平移可知0<b<1,故函數(shù)g(x)=ax+b的大致圖象是D故選D.4.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過
B作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D5.將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.6.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因為已知a、b、c是實數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.7.隨機變量ξ的分布列為
ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.8.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.9.選修4-1:幾何證明選講
如圖,D,E分別為△ABC的邊AB,AC上的點,且不與△ABC的頂點重合.已知AE的長為m,AC的長為n,AD,AB的長是關(guān)于x的方程x2-14x+mn=0的兩個根.
(Ⅰ)證明:C,B,D,E四點共圓;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.
答案:(I)連接DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,從而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四點共圓.(Ⅱ)m=4,n=6時,方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點G,DB的中點F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點,連接DH.∵C,B,D,E四點共圓,∴C,B,D,E四點所在圓的圓心為H,半徑為DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四點所在圓的半徑為5210.已知點P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當sin(θ+?)=1時,ω=3x+2y的最大值為
11故為11.11.已知二項分布滿足X~B(6,23),則P(X=2)=______,EX=______.答案:∵X服從二項分布X~B(6,23)∴P(X=2)=C26(13)4(23)2=20243∵隨機變量ξ服從二項分布ξ~B(6,23),∴期望Eξ=np=6×23=4故為:20243;412.已知某一隨機變量ξ的分布列如下,且Eξ=6.3,則a的值為()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C13.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應(yīng)選用(
)
A.散點圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A14.若點(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實數(shù)a的取值范圍是()
A.-2<a<2
B.0<a<2
C.a(chǎn)<-2或a>2
D.a(chǎn)=±2答案:A15.如圖,以1×3方格紙中的格點為起點和終點的所有向量中,有多少種大小不同的模?有多少種不同的方向?
答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個模,進而分析方向,正方形的邊對應(yīng)的向量共有四個方向,邊長為1的正方形的對角線對應(yīng)的向量共四個方向;1×2的矩形的對角線對應(yīng)的向量共四個方向;1×3的矩形對角線對應(yīng)的向量共有四個方向共有16個方向16.已知兩點A(2,1),B(3,3),則直線AB的斜率為()
A.2
B.
C.
D.-2答案:A17.點O是△ABC內(nèi)一點,若+=-,則是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A18.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:20319.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()
A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于
B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于
C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于
D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D20.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.21.集合{0,1}的子集有()個.A.1個B.2個C.3個D.4個答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個,故選D.22.下面哪個不是算法的特征()A.抽象性B.精確性C.有窮性D.唯一性答案:根據(jù)算法的概念,可知算法具有抽象性、精確性、有窮性等,同一問題,可以有不同的算法,故選D.23.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}24.m為何值時,關(guān)于x的方程8x2-(m-1)x+(m-7)=0的兩根,
(1)為正數(shù);
(2)一根大于2,一根小于2.答案:(1)設(shè)方程兩根為x1,x2,則∵方程的兩根為正數(shù),∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由題意得f(2)<0,解得m>27.25.如圖,已知某探照燈反光鏡的縱切面是拋物線的一部分,光源安裝在焦點F上,且燈的深度EG等于燈口直徑AB,若燈的深度EG為64cm,則光源安裝的位置F到燈的頂端G的距離為______cm.答案:以反射鏡頂點為原點,以頂點和焦點所在直線為x軸,建立直角坐標系.設(shè)拋物線方程為y2=2px,依題意可點A(64,32)在拋物線上代入拋物線方程得322=128p解得p=8∴焦點坐標為(4,0),而光源到反射鏡頂點的距離正是拋物線的焦距,即4cm.故為:4.26.在極坐標系中,若點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,則ρ0=______.答案:∵點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.27.在下面的圖示中,結(jié)構(gòu)圖是()
A.
B.
C.
D.
答案:B28.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.29.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()
A.橢圓
B.AB所在直線
C.線段AB
D.無軌跡答案:C30.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191031.已知三角形ABC的一個頂點A(2,3),AB邊上的高所在的直線方程為x-2y+3=0,角B的平分線所在的直線方程為x+y-4=0,求此三角形三邊所在的直線方程.答案:由題意可得AB邊的斜率為-2,由點斜式求得AB邊所在的直線方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故點B的坐標為(3,1).設(shè)點A關(guān)于角B的平分線所在的直線方程為x+y-4=0的對稱點為M(a,b),則M在BC邊所在的直線上.則由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故點M(1,2),由兩點式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點C的坐標為(2,52),由此可得得AC的方程為x=2.32.從⊙O外一點P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點.求證:ACBC=ADBD.
答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.33.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C34.若F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.35.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點指向遠處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°36.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C37.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.38.已知A、B、M三點不共線,對于平面ABM外的任意一點O,確定在下列條件下,點P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.39.若實數(shù)X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D40.有四條線段,其長度分別為2,3,4,5,現(xiàn)從中任取三條,則以這三條線段為邊可以構(gòu)成三角形的概率是______.答案:所有的取法共有C34=4種,三條線段構(gòu)成三角形的條件是任意兩邊之和大于第三邊,其中能夠成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3種,故這三條線段為邊可以構(gòu)成三角形的概率是34,故為34.41.______稱為向量;常用
______表示,記為
______,又可用小寫字線表示為
______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有帶箭頭的線段來表示,記為有向線段AB,②又可用小寫字線表示為:a,b,c…,故為:既有大小,又有方向的量;有帶箭頭的線段,有向線段AB,a,b,c….42.已知點A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()
A.
B.
C.
D.答案:D43.在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+.z)i=3-i2+i(i為虛數(shù)單位).答案:原方程化簡為|z|2+(z+.z)i=1-i,設(shè)z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.44.用反證法證明命題:“三角形三個內(nèi)角至少有一個不大于60°”時,應(yīng)假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,先把要證的結(jié)論進行否定,得到要證的結(jié)論的反面,而命題:“三角形三個內(nèi)角至少有一個不大于60°”的否定為“三個內(nèi)角都大于60°”,故為三個內(nèi)角都大于60°.45.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()
A.
B.-
C.2
D.-2答案:B46.直線l只經(jīng)過第一、三、四象限,則直線l的斜率k()
A.大于零
B.小于零
C.大于零或小于零
D.以上結(jié)論都有可能答案:A47.如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°48.平面上動點M到定點F(3,0)的距離比M到直線l:x+1=0的距離大2,則動點M滿足的方程()
A.x2=6y
B.x2=12y
C.y2=6x
D.y2=12x答案:D49.設(shè)b是a的相反向量,則下列說法錯誤的是()
A.a(chǎn)與b的長度必相等
B.a(chǎn)與b的模一定相等
C.a(chǎn)與b一定不相等
D.a(chǎn)是b的相反向量答案:C50.已知在平面直角坐標系xOy中,圓C的參數(shù)方程為x=3+3cosθy=1+3sinθ,(θ為參數(shù)),以O(shè)x為極軸建立極坐標系,直線l的極坐標方程為pcos(θ+π6)=0.
(1)寫出直線l的直角坐標方程和圓C的普通方程;
(2)求圓C截直線l所得的弦長.答案:(1)消去參數(shù)θ,得圓C的普通方程為(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直線l的直角坐標方程為3x-y=0.(5分)(2)圓心(3,1)到直線l的距離為d=|3×3-1|(3)2+12=1.(7分)設(shè)圓C直線l所得弦長為m,則m2=r2-d2=9-1=22,∴m=42.(10分)第3卷一.綜合題(共50題)1.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(
)。答案:圓,雙曲線2.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.3.已知x1,x2,…,xn都是正數(shù),且x1+x2+…+xn=1,求證:
++…+≥n2.答案:證明略解析:證明
++…+=(x1+x2+…+xn)(
++…+)≥=n2.4.求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).答案:證明見過程解析:求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).5.直線l與拋物線y2=2x相交于A、B兩點,O為拋物線的頂點,若OA⊥OB.證明:直線l過定點.答案:證明:設(shè)點A,B的坐標分別為(x1,y1),(x2,y2)(I)當直線l有存在斜率時,設(shè)直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&
y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(2,0)(11分)(II)當直線l不存在斜率時,設(shè)它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過定點(2,0)綜合(1)(2)可知,滿足條件的直線過定點(2,0).6.拋物線y=4x2的焦點坐標為()
A.(1,0)
B.(0,)
C.(0,1)
D.(,0)答案:B7.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標為
______.答案:由題意設(shè)C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標是(0,0,149)故為:(0,0,149)8.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.9.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C10.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因為半徑為5,圓心在y軸上,且與直線y=6相切,所以可知有兩個圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.11.已知實數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設(shè)P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點P到原點的距離的最小值.則根據(jù)點到直線的距離公式得點P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.12.現(xiàn)有含鹽7%的食鹽水為200g,需將它制成工業(yè)生產(chǎn)上需要的含鹽5%以上且在6%以下(不含5%和6%)的食鹽水,設(shè)需要加入4%的食鹽水xg,則x的取值范圍是(
)。答案:(100,400)13.下列特殊命題中假命題的個數(shù)是()
①有的實數(shù)是無限不循環(huán)小數(shù);
②有些三角形不是等腰三角形;
③有的菱形是正方形.
A.0
B.1
C.2
D.3答案:B14.方程組的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C15.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個函數(shù)與函數(shù)y=x
(x≥0)有相同圖象時,這兩個函數(shù)應(yīng)是同一個函數(shù).A中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).B中的函數(shù)和函數(shù)y=x
(x≥0)具有相同的定義域、值域、對應(yīng)關(guān)系,故是同一個函數(shù).C中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).D中的函數(shù)和函數(shù)y=x
(x≥0)的定義域不同,故不是同一個函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x
(x≥0)是同一個函數(shù),具有相同的圖象,故選B.16.設(shè)f(x)=ex(x≤0)ln
x(x>0),則f[f(13)]=______.答案:因為f(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故為13.17.在極坐標系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標為()
A.(2,0)
B.
C.(2,π)
D.答案:D18.若命題P(n)對n=k成立,則它對n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()
A.P(n)對所有自然數(shù)n都成立
B.P(n)對所有正偶數(shù)n成立
C.P(n)對所有正奇數(shù)n都成立
D.P(n)對所有大于1的自然數(shù)n成立答案:B19.如圖為某公司的組織結(jié)構(gòu)圖,則后勤部的直接領(lǐng)導(dǎo)是______.
答案:有已知中某公司的組織結(jié)構(gòu)圖,可得專家辦公室直接領(lǐng)導(dǎo):財務(wù)部,后勤部和編輯部三個部門,故后勤部的直接領(lǐng)導(dǎo)是專家辦公室.故為:專家辦公室.20.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.21.如圖,AB是半圓O的直徑,C、D是半圓上的兩點,半圓O的切線PC交AB的延長線于點P,∠PCB=25°,則∠ADC為()
A.105°
B.115°
C.120°
D.125°
答案:B22.頻率分布直方圖的重心是()
A.眾數(shù)
B.中位數(shù)
C.標準差
D.平均數(shù)答案:D23.現(xiàn)有以下兩項調(diào)查:①某校高二年級共有15個班,現(xiàn)從中選擇2個班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進行調(diào)查.完成①、②這兩項調(diào)查宜采用的抽樣方法依次是()A.簡單隨機抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡單隨機抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個班中選擇2個班,檢查其清潔衛(wèi)生狀況;總體個數(shù)不多,而且差異不大,故可采用簡單隨機抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項調(diào)查宜采用的抽樣方法依次是簡單隨機抽樣法,分層抽樣法故選A24.已知直線經(jīng)過點,傾斜角,設(shè)與圓相交與兩點,求點到兩點的距離之積。答案:2解析:把直線代入得,則點到兩點的距離之積為25.為了了解學(xué)校學(xué)生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示,根據(jù)此圖,估計該校2000名高中男生中體重大于70.5公斤的人數(shù)為()
A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數(shù)的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數(shù)為2000×0.181=362,故選B26.設(shè)隨機變量ξ的概率分布如表所示:
求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);
(2)P(x)=P(ξ≤x),x∈R.答案:(1)根據(jù)所給的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根據(jù)所給的分布列和第一問做出的結(jié)果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)27.若直線y=x+b與圓x2+y2=2相切,則b的值為(
)
A.±4
B.±2
C.±
D.±2
答案:B28.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.29.下列各個對應(yīng)中,從A到B構(gòu)成映射的是()A.
B.
C.
D.
答案:按照映射的定義,A中的任何一個元素在集合B中都有唯一確定的元素與之對應(yīng).而在選項A和選項B中,前一個集合中的元素2在后一個集合中沒有元素與之對應(yīng),故不符合映射的定義.選項C中,前一個集合中的元素1在后一集合中有2個元素和它對應(yīng),也不符合映射的定義,只有選項D滿足映射的定義,故選D.30.用秦九韶算法求多項式
在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項式改寫,然后由內(nèi)到外逐次計算即可.
而,所以有,,,,,.即.【名師指引】利用秦九韶算法計算多項式值關(guān)鍵是能正確地將所給多項式改寫,然后由內(nèi)到外逐次計算,由于后項計算需用到前項的結(jié)果,故應(yīng)認真、細心,確保中間結(jié)果的準確性.31.給出以下四個對象,其中能構(gòu)成集合的有()
①教2011屆高一的年輕教師;
②你所在班中身高超過1.70米的同學(xué);
③2010年廣州亞運會的比賽項目;
④1,3,5.A.1個B.2個C.3個D.4個答案:解析:因為未規(guī)定年輕的標準,所以①不能構(gòu)成集合;由于②③④中的對象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.32.在參數(shù)方程所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是()
A.
B.
C.
D.答案:B33.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個向量共面,則實數(shù)λ等于
A.
B.
C.
D.答案:D34.為了了解某社區(qū)居民是否準備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進行調(diào)查,若60~70歲這個年齡段中抽查了8人,那么x為()
A.90
B.120
C.180
D.200答案:D35.下列關(guān)于結(jié)構(gòu)圖的說法不正確的是()
A.結(jié)構(gòu)圖中各要素之間通常表現(xiàn)為概念上的從屬關(guān)系和邏輯上的先后關(guān)系
B.結(jié)構(gòu)圖都是“樹形”結(jié)構(gòu)
C.簡潔的結(jié)構(gòu)圖能更好地反映主體要素之間關(guān)系和系統(tǒng)的整體特點
D.復(fù)雜的結(jié)構(gòu)圖能更詳細地反映系統(tǒng)中各細節(jié)要素及其關(guān)系答案:B36.為提高廣東中小學(xué)生的健康素質(zhì)和體能水平,廣東省教育廳要求廣東各級各類中小學(xué)每年都要在體育教學(xué)中實施“體能素質(zhì)測試”,測試總成績滿分為100分.根據(jù)廣東省標準,體能素質(zhì)測試成績在[85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質(zhì)為不合格.
現(xiàn)從佛山市某校高一年級的900名學(xué)生中隨機抽取30名學(xué)生的測試成績?nèi)缦拢?/p>
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答題卷上完成頻率分布表和頻率分布直方圖,并估計該校高一年級體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù);
(2)在上述抽取的30名學(xué)生中任取2名,設(shè)ξ為體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望(結(jié)果用分數(shù)表示);
(3)請你依據(jù)所給數(shù)據(jù)和上述廣東省標準,對該校高一學(xué)生的體能素質(zhì)給出一個簡短評價.答案:(1)由已知的數(shù)據(jù)可得頻率分布表和頻率分布直方圖如下:
分組
頻數(shù)
頻率[55,60)
1
130[60,65)
1
130[65,70)
2
230[70,75)
2
230[75,80)
4
430[8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中語文第2單元孟子蚜1王好戰(zhàn)請以戰(zhàn)喻課件新人教版選修先秦諸子蚜
- 2024年吉林省長春市中考英語試題含解析
- 七年級下心理健康教育教案
- 2024年河北省高考生物試卷真題(含答案解析)
- 2024至2030年中國攻瑰茄行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國手持式多波長穩(wěn)定光源行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國印花T/C純棉休閑襯衫行業(yè)投資前景及策略咨詢研究報告
- 2024年山東省東營市中考語文試題含解析
- 2024年黑龍江省齊齊哈爾市中考語文試題含解析
- 2024年中國鋼絲跑道軸承市場調(diào)查研究報告
- 風(fēng)電前期審批手續(xù)流程圖
- 《鄉(xiāng)土中國》之《文字下鄉(xiāng)》《再論文字下鄉(xiāng)》-統(tǒng)編版高中語文必修上冊
- 喜來登酒店鋼結(jié)構(gòu)工程施工方案
- 高中英語課程標準試題含答案
- 廢舊物資競價出售文件【模板】
- GB/T 3733-2008卡套式端直通管接頭
- GB/T 19851.2-2005中小學(xué)體育器材和場地第2部分:體操器材
- 客房服務(wù)員中級理論知識試卷(含答案)
- 軟土地基處理新技術(shù)-課件
- 幼兒園教職工代表大會工作規(guī)則
- 護士長崗位競聘分析課件
評論
0/150
提交評論