2023年廣西英華國際職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年廣西英華國際職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年廣西英華國際職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年廣西英華國際職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年廣西英華國際職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣西英華國際職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()

A.30°

B.45°

C.60°

D.90°答案:C2.已知函數(shù)y=f(x)是偶函數(shù),其圖象與x軸有四個交點(diǎn),則f(x)=0的所有實數(shù)根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對稱∴其圖象與x軸有四個交點(diǎn)也關(guān)于y軸對稱∴方程f(x)=0的所有實根之和為0故為:03.過點(diǎn)A(a,4)和B(-1,a)的直線的傾斜角等于45°,則a的值是______.答案:∵過點(diǎn)A(a,4)和B(-1,a)的直線的傾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故為:32.4.將一個總體分為A、B、C三層,其個體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應(yīng)從C中抽取樣本的個數(shù)為______個.答案:由分層抽樣的定義可得應(yīng)從B中抽取的個體數(shù)為180×25+3+2=36,故為:36.5.已知點(diǎn)A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的動點(diǎn),直線BP與線段AP的垂直平分線交于點(diǎn)Q.

(1)證明點(diǎn)Q的軌跡是雙曲線,并求出軌跡方程.

(2)若(BQ+BA)?QA=0,求點(diǎn)Q的坐標(biāo).答案:(1)∵點(diǎn)Q在線段AP的垂直平分線上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴點(diǎn)Q的軌跡是以A、B為焦點(diǎn)的雙曲線.(4′)其軌跡方程是x29-y216=1.(7′)(2)以A、B、Q為三個頂點(diǎn)作平行四邊形ABQC,則BQ+BA=BC∵(BQ+BA)?QA=0,∴BC?QC=0,∴平行四邊形ABQC是菱形,∴|BA|=|BQ|.(8′)∴點(diǎn)Q在圓(x+5)2+y2=100上.解方程組(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)6.若有以下說法:

①相等向量的模相等;

②若a和b都是單位向量,則a=b;

③對于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,則a∥c.

其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因為單位向量的模等于1,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當(dāng)且僅當(dāng)a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A7.(不等式選講選做題)已知a,b,c∈R+,且a+b+c=1,則3a+1+3b+1+3c+1的最大值為______.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1),即a=b=c=13時,(3a+1+3b+1+3c+1)2的最大值為18因此3a+1+3b+1+3c+1的最大值為32.故為:328.方程組的解集是[

]A.

B.{x,y|x=3且y=-7}

C.{3,-7}

D.{(x,y)|x=3且y=-7}答案:D9.下列說法正確的是()

A.向量

與向量是共線向量,則A、B、C、D必在同一直線上

B.向量與平行,則與的方向相同或相反

C.向量的長度與向量的長度相等

D.單位向量都相等答案:C10.有以下四個結(jié)論:

①lg(lg10)=0;

②lg(lne)=0;

③若e=lnx,則x=e2;

④ln(lg1)=0.

其中正確的是()

A.①②

B.①②③

C.①②④

D.②③④答案:A11.若A,B,C是直線存在實數(shù)x使得,實數(shù)x為()

A.-1

B.0

C.

D.答案:A12.設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C13.參數(shù)方程x=3cosθy=4sinθ,(θ為參數(shù))化為普通方程是______.答案:由參數(shù)方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化簡得x29+y216=1,即為橢圓的普通方程故為:x29+y216=114.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()

A.長軸在x軸上的橢圓

B.長軸在y軸上的橢圓

C.實軸在x軸上的雙曲線

D.實軸在y軸上的雙曲線答案:D15.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B16.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運(yùn)行軌道是一個以地心為焦點(diǎn)的橢圓,飛船近地點(diǎn)、遠(yuǎn)地點(diǎn)離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時飛船軌道的離心率為25225+R故為:25225+R.17.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個數(shù)為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個數(shù)為8.故為:818.已知△ABC是邊長為4的正三角形,D、P是△ABC內(nèi)部兩點(diǎn),且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為______.答案:取BC的中點(diǎn)E,連接AE,根據(jù)△ABC是邊長為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點(diǎn)D為AE的中點(diǎn),AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:3419.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個負(fù)數(shù)”時的假設(shè)為()

A.a(chǎn),b,c,d中至少有一個正數(shù)

B.a(chǎn),b,c,d全為正數(shù)

C.a(chǎn),b,c,d全都大于等于0

D.a(chǎn),b,c,d中至多有一個負(fù)數(shù)答案:C20.直線上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是_______。答案:,或21.已知兩曲線參數(shù)方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點(diǎn)坐標(biāo)為______.答案:曲線參數(shù)方程x=5cosθy=sinθ(0≤θ<π)的直角坐標(biāo)方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點(diǎn)坐標(biāo)為(1,255).故為:(1,255).22.已知m,n為正整數(shù).

(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時,(1+x)m≥1+mx;

(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;

(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:當(dāng)x=0時,(1+x)m≥1+mx;即1≥1成立,x≠0時,證:用數(shù)學(xué)歸納法證明:(ⅰ)當(dāng)m=1時,原不等式成立;當(dāng)m=2時,左邊=1+2x+x2,右邊=1+2x,因為x2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當(dāng)m=k時,不等式成立,即(1+x)k≥1+kx,則當(dāng)m=k+1時,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當(dāng)m=k+1時,不等式也成立.綜合(?。áⅲ┲?,對一切正整數(shù)m,不等式都成立.(Ⅱ)證:當(dāng)n≥6,m≤n時,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當(dāng)n≥6時,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當(dāng)n≥6時,不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當(dāng)n=1時,3≠4,等式不成立;當(dāng)n=2時,32+42=52,等式成立;當(dāng)n=3時,33+43+53=63,等式成立;當(dāng)n=4時,34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當(dāng)n=5時,同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當(dāng)x=0或m=1時,原不等式中等號顯然成立,下用數(shù)學(xué)歸納法證明:當(dāng)x>-1,且x≠0時,m≥2,(1+x)m>1+mx.①(?。┊?dāng)m=2時,左邊=1+2x+x2,右邊=1+2x,因為x≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當(dāng)m=k(k≥2)時,不等式①成立,即(1+x)k>1+kx,則當(dāng)m=k+1時,因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當(dāng)m=k+1時,不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當(dāng)n≥6,m≤n時,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當(dāng)n≥6時,不存在滿足該等式的正整數(shù)n.下同解法1.23.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-224.為了了解1200名學(xué)生對學(xué)校某項教改試驗的意見,打算從中抽取一個容量為40的樣考慮用系統(tǒng)抽樣,則分段的間隔k為______答案:由題意知本題是一個系統(tǒng)抽樣,總體中個體數(shù)是1200,樣本容量是40,根據(jù)系統(tǒng)抽樣的步驟,得到分段的間隔K=120040=30,故為:30.25.(坐標(biāo)系與參數(shù)方程選做題)過點(diǎn)(2,π3)且平行于極軸的直線的極坐標(biāo)方程為______.答案:法一:先將極坐標(biāo)化成直角坐標(biāo)表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標(biāo)表示,即ρsinθ=3.法二:在極坐標(biāo)系中,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.設(shè)A(ρ,θ)是直線上的任一點(diǎn),A到極軸的距離AH=2sinπ3=3,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.故為:ρsinθ=326.

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F的直線交y軸正半軸于點(diǎn)P,交拋物線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B27.(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根

(1)證明四點(diǎn)共圓

(2)若求四點(diǎn)所在圓的半徑答案:(1)見解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因為所以,∽,四點(diǎn)C、B、D、E共圓。(Ⅱ)當(dāng)時,方程的根因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過G,F做AC,AB的垂線,兩垂線交于點(diǎn)H,連接DH,因為四點(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點(diǎn)評:此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。28.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個點(diǎn)的坐標(biāo)是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B29.一張紙上畫有一個半徑為R的圓O和圓內(nèi)一個定點(diǎn)A,且OA=a,折疊紙片,使圓周上某一點(diǎn)A′剛好與點(diǎn)A重合.這樣的每一種折法,都留下一條折痕.當(dāng)A′取遍圓周上所有點(diǎn)時,求所有折痕所在直線上點(diǎn)的集合.答案:對于⊙O上任意一點(diǎn)A′,連AA′,作AA′的垂直平分線MN,連OA′,交MN于點(diǎn)P,則OP+PA=OA′=R.由于點(diǎn)A在⊙O內(nèi),故OA=a<R.從而當(dāng)點(diǎn)A′取遍圓周上所有點(diǎn)時,點(diǎn)P的軌跡是以O(shè)、A為焦點(diǎn),OA=a為焦距,R(R>a)為長軸的橢圓C.而MN上任一異于P的點(diǎn)Q,都有OQ+QA=OQ+QA′>OA′,故點(diǎn)Q在橢圓C外,即折痕上所有的點(diǎn)都在橢圓C上及C外.反之,對于橢圓C上或外的一點(diǎn)S,以S為圓心,SA為半徑作圓,交⊙O于A′,則S在AA′的垂直平分線上,從而S在某條折痕上.最后證明所作⊙S與⊙O必相交.1°

當(dāng)S在⊙O外時,由于A在⊙O內(nèi),故⊙S與⊙O必相交;2°

當(dāng)S在⊙O內(nèi)時(例如在⊙O內(nèi),但在橢圓C外或其上的點(diǎn)S′),取過S′的半徑OD,則由點(diǎn)S′在橢圓C外,故OS′+S′A≥R(橢圓的長軸).即S′A≥S′D.于是D在⊙S′內(nèi)或上,即⊙S′與⊙O必有交點(diǎn).于是上述證明成立.綜上可知,折痕上的點(diǎn)的集合為橢圓C上及C外的所有點(diǎn)的集合.30.已知AB和CD是曲線(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·

|PD|,

(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;

(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個不相等的實數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。31.節(jié)假日時,國人發(fā)手機(jī)短信問候親友已成為一種時尚,若小李的40名同事中,給其發(fā)短信問候的概率為1,0.8,0.5,0的人數(shù)分別是8,15,14,3(人),通常情況下,小李應(yīng)收到同事問候的信息條數(shù)為()

A.27

B.37

C.38

D.8答案:A32.如果:在10進(jìn)制中2004=4×100+0×101+0×102+2×103,那么類比:在5進(jìn)制中數(shù)碼2004折合成十進(jìn)制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.33.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個虛根為-1-5±10-25i4,-1+5±10+25i4中的一個故為:-1-5+10-25i4.34.直線2x+y-3=0與直線3x+9y+1=0的夾角是()

A.

B.a(chǎn)rctan2

C.

D.答案:C35.在△ABC中,已知A(2,3),B(8,-4),點(diǎn)G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標(biāo)為______.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).36.已知方程x2+y2+4x-2y-4=0,則x2+y2的最大值是()A.95B.45C.14-65D.14+65答案:由方程x2+y2+4x-2y-4=0得到圓心為(-2,1),半徑為3,設(shè)圓上一點(diǎn)為(x,y)圓心到原點(diǎn)的距離是(-2)2+1

2=5圓上的點(diǎn)到原點(diǎn)的最大距離是5+3故x2+y2的最大值是為(5+3)2=14+65故選D37.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.38.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.39.已知拋物線x2=4y的焦點(diǎn)為F,A、B是拋物線上的兩動點(diǎn),且AF=λFB(λ>0).過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.

(I)證明FM.AB為定值;

(II)設(shè)△ABM的面積為S,寫出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點(diǎn)F(0,1),準(zhǔn)線方程為y=-1,顯然AB斜率存在且過F(0,1)設(shè)其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點(diǎn)斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點(diǎn)M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準(zhǔn)線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時,S取得最小值4.40.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()

A.=

B.與同向

C.∥

D.與有相同的位置向量答案:C41.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點(diǎn)可以構(gòu)成直角三角形B.A,B,C三點(diǎn)可以構(gòu)成銳角三角形C.A,B,C三點(diǎn)可以構(gòu)成鈍角三角形D.A,B,C三點(diǎn)不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點(diǎn)可以構(gòu)成直角三角形,故選A.42.在半徑為R的球內(nèi)作一內(nèi)接圓柱,這個圓柱的底面半徑和高為何值時,它的側(cè)面積最大?并求此最大值.答案:解

如圖,設(shè)內(nèi)接圓柱的高為h,圓柱的底面半徑為r,則h2+4r2=4R2因為h2+4r2≥4rh,當(dāng)且僅當(dāng)h=2r時取等.所以4R2≥4rh,即rh≤R2所以,S側(cè)=2πrh≤2πR2,當(dāng)且僅當(dāng)h=2r時取等.又因為h2+4r2=4R2,所以r=22R,h=2R時取等綜上,當(dāng)內(nèi)接圓柱的底面半徑為22R,高為2R時,它的側(cè)面積最大,為2πR243.下列敘述中:

①變量間關(guān)系有函數(shù)關(guān)系,還有相關(guān)關(guān)系;②回歸函數(shù)即用函數(shù)關(guān)系近似地描述相關(guān)關(guān)系;③=x1+x2+…+xn;④線性回歸方程一定可以近似地表示所有相關(guān)關(guān)系.其中正確的有()

A.①②③

B.①②④

C.①③

D.③④答案:A44.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無軌跡答案:C45.已知不等式a≤對x取一切負(fù)數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對x取一切負(fù)數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.46.引入復(fù)數(shù)后,數(shù)系的結(jié)構(gòu)圖為()

A.

B.

C.

D.

答案:A47.若矩陣M=1111,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x',y')是所得的直線上一點(diǎn),[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.48.1

甲、乙、丙三臺機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺機(jī)床加工的零件都是一等品的概率為

(1)分別求甲、乙、丙三臺機(jī)床各自加工零件是一等品的概率;

(2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.答案:見解析解析:解:(1)設(shè)A、B、C分別為甲、乙、丙三臺機(jī)床各自加工的零件是一等品的事件①②③49.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(diǎn)(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線的下方的概率是636=16故選A.50.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.第2卷一.綜合題(共50題)1.如圖程序運(yùn)行后輸出的結(jié)果為______.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當(dāng)n=12時,不滿足“s<10”,則輸出n的值2故為:22.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動,使得點(diǎn)P到直線AB的距離為定值a(a>0),則動點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因為點(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.3.已知兩個力F1,F(xiàn)2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對應(yīng)向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.4.北京期貨商會組織結(jié)構(gòu)設(shè)置如下:

(1)會員代表大會下設(shè)監(jiān)事會、會長辦公會,而會員代表大會于會長辦公會共轄理事會;

(2)會長辦公會設(shè)會長,會長管理秘書長;

(3)秘書長具體分管:秘書處、規(guī)范自律委員會、服務(wù)推廣委員會、發(fā)展創(chuàng)新委員會.

根據(jù)以上信息繪制組織結(jié)構(gòu)圖.答案:繪制組織結(jié)構(gòu)圖:5.已知平面內(nèi)一動點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.

(1)求動點(diǎn)P的軌跡C的方程;

(2)過點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知動點(diǎn)P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動點(diǎn)P在以F(1,0)為焦點(diǎn),以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.6.已知點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,則|PF|的長為______.答案:∵拋物線x=4t2y=4t(t為參數(shù))上,∴y2=4x,∵點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.7.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()

A.=

B.與同向

C.∥

D.與有相同的位置向量答案:C8.甲、乙兩人約定上午7:20至8:00之間到某站乘公共汽車,在這段時間內(nèi)有3班公共汽車,它們開車的時刻分別是7:40、7:50和8:00,甲、乙兩人約定,見車就乘,則甲、乙同乘一車的概率為(假定甲、乙兩人到達(dá)車站的時刻是互相不牽連的,且每人在7:20至8:00時的任何時刻到達(dá)車站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一輛車的概率為12×12=14,甲、乙同乘第二輛車的概率為14×14=116,甲、乙同乘第三輛車的概率為14×14=116,甲、乙同乘一車的概率為14+116+116=38,故選C.9.在復(fù)平面內(nèi),記復(fù)數(shù)3+i對應(yīng)的向量為OZ,若向量OZ饒坐標(biāo)原點(diǎn)逆時針旋轉(zhuǎn)60°得到向量OZ所對應(yīng)的復(fù)數(shù)為______.答案:向量OZ饒坐標(biāo)原點(diǎn)逆時針旋轉(zhuǎn)60°得到向量所對應(yīng)的復(fù)數(shù)為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.10.已知x1、x2是關(guān)于x1的方程x2-(k-2)x+k2+3k+5=0的兩個實根,那么x12+x22的最大值是[

]

A.19

B.17

C.

D.18答案:D11.已知定點(diǎn)A(12.0),M為曲線x=6+2cosθy=2sinθ上的動點(diǎn),若AP=2AM,試求動點(diǎn)P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動點(diǎn)(x,y)由AP=2AM,即M為線段AP的中點(diǎn)故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動點(diǎn)P的軌跡C的方程為x2+y2=1612.三個數(shù)a=60.5,b=0.56,c=log0.56的大小順序為______.(按大到小順序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故為a>b>c.13.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()

A.

B.

C.2

D.答案:B14.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個動點(diǎn),如果延長F1P到Q,使得|PQ|=|PF2|,那么動點(diǎn)Q的軌跡是()

A.圓

B.橢圓

C.雙曲線的一支

D.拋物線答案:A15.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.16.下列四個散點(diǎn)圖中,使用線性回歸模型擬合效果最好的是()

A.

B.

C.

D.

答案:D17.對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2012次操作后得到的數(shù)是

()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結(jié)果,以3為周期,循環(huán)出現(xiàn)∵2012=3×670+2∴第2012次操作后得到的數(shù)與第2次操作后得到的數(shù)相同∴第2012次操作后得到的數(shù)是55故選C.18.將圖形F按=(,)(其中)平移,就是將圖形F()A.向x軸正方向平移個單位,同時向y軸正方向平移個單位.B.向x軸負(fù)方向平移個單位,同時向y軸正方向平移個單位.C.向x軸負(fù)方向平移個單位,同時向y軸負(fù)方向平移個單位.D.向x軸正方向平移個單位,同時向y軸負(fù)方向平移個單位.答案:A解析:根據(jù)圖形容易得出結(jié)論.19.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當(dāng)a>1時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當(dāng)1>a>0時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得

a=12.綜上,a的值為12或32故選C.20.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:221.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.22.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()

A.(x-1)2+y2=1

B.x2+(y-1)2=1

C.(x+1)2+y2=1

D.x2+y2=2答案:A23.觀察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5個等式應(yīng)為______.答案:由題意,(i)等式左邊為一段連續(xù)自然數(shù)之和,且最后一個和數(shù)恰為各等式序號的立方,最前一個和數(shù)恰為等式序號減1平方加1;(ii)等式右邊均為兩數(shù)立方和,且也與等式序號具有明顯的相關(guān)性.故猜想第5個等式應(yīng)為17+18+19+20+21+22+23+24+25=64+125故為:17+18+19+20+21+22+23+24+25=64+12524.點(diǎn)M的直角坐標(biāo)為(,1,-2),則它的柱坐標(biāo)為()

A.(2,,2)

B.(2,,2)

C.(2,,-2)

D.(2,-,-2)答案:C25.點(diǎn)(1,-1)在圓(x-a)2+(y-a)2=4的內(nèi)部,則a取值范圍是()

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)≠±1答案:A26.安排6名演員的演出順序時,要求演員甲不第一個出場,也不最后一個出場,則不同的安排方法種數(shù)是()

A.120

B.240

C.480

D.720答案:C27.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D28.設(shè)a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時,等號成立.29.△ABC是邊長為1的正三角形,那么△ABC的斜二測平面直觀圖△A′B′C′的面積為(

A.

B.

C.

D.答案:D30.某品牌平板電腦的采購商指導(dǎo)價為每臺2000元,若一次采購數(shù)量達(dá)到一定量,還可享受折扣.如圖為某位采購商根據(jù)折扣情況設(shè)計的算法程序框圖,若一次采購85臺該平板電腦,則S=______元.答案:分析程序中各變量、各語句,其作用是:表示一次采購共需花費(fèi)的金額,再根據(jù)流程圖所示的順序,可知:該程序的作用是計算分段函數(shù)S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.31.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,則圓臺較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因為圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A32.已知點(diǎn)P(t,t),t∈R,點(diǎn)M是圓x2+(y-1)2=上的動點(diǎn),點(diǎn)N是圓(x-2)2+y2=上的動點(diǎn),則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C33.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點(diǎn)D,AD=2,則∠C的大小為______.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°34.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設(shè)a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.35.若動點(diǎn)P到兩個定點(diǎn)F1(-1,0)、F2(1,0)的距離之差的絕對值為定值a(0≤a≤2),試求動點(diǎn)P的軌跡.答案:①當(dāng)a=0時,||PF1|-|PF2||=0,從而|PF1|=|PF2|,所以點(diǎn)P的軌跡為直線:線段F1F2的垂直平分線.②當(dāng)a=2時,||PF1|-|PF2||=2=|F1F2|,所以點(diǎn)P的軌跡為兩條射線.③當(dāng)0<a<2時,||PF1|-|PF2||=a<|F1F2|,所以點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線.36.設(shè)雙曲線(a>0,b>0)的右頂點(diǎn)為A,P為雙曲線上的一個動點(diǎn)(不是頂點(diǎn)),從點(diǎn)A引雙曲線的兩條漸近線的平行線,與直線OP分別交于Q,R兩點(diǎn),其中O為坐標(biāo)原點(diǎn),則|OP|2與|OQ|?|OR|的大小關(guān)系為()

A.|OP|2<|OQ|?|OR|

B.|OP|2>|OQ|?|OR|

C.|OP|2=|OQ|?|OR|

D.不確定答案:C37.如圖,從圓O外一點(diǎn)P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.38.若直線x=1的傾斜角為α,則α等于

______.答案:因為直線x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°39.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b

由|a|=|b|=2,∠AOB=60°,得:a2=b2=

4,a?b

=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π640.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為______.答案:連接AC、BC,則∠ACD=∠ABC,又因為∠ADC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.41.將(x+y+z)5展開合并同類項后共有______項,其中x3yz項的系數(shù)是______.答案:將(x+y+z)5展開合并同類項后,每一項都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是實數(shù),a、b、c∈N,構(gòu)造8個完全一樣的小球模型,分成3組,每組至少一個,共有分法C27種,每一組中都去掉一個小球的數(shù)目分別作為(x+y+z)5的展開式中每一項中x,y,z各字母的次數(shù),小球分組模型與各項的次數(shù)是一一對應(yīng)的.故將(x+y+z)5展開合并同類項后共有C27=21項.把(x+y+z)5的展開式看成5個因式(x+y+z)的乘積形式.從中任意選3個因式,這3個因式都取x,另外的2個因式分別取y、z,相乘即得含x3yz項,故含x3yz項的系數(shù)為C35=20,故為21;20.42.如圖為一個求50個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A43.若點(diǎn)A分有向線段所成的比是2,則點(diǎn)C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D44.用“斜二測畫法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為______.答案:設(shè)正三角形的標(biāo)出為:1,正三角形的高為:32,所以正三角形的面積為:34;按照“斜二測畫法”畫法,△A′B′C′的面積是:12×1×34×sin45°=616;所以△A′B′C′與△ABC的面積之比為:61634=24,故為:2445.等腰三角形兩腰所在的直線方程是l1:7x-y-9=0,l2:x+y-7=0,它的底邊所在直線經(jīng)過點(diǎn)A(3,-8),求底邊所在直線方程.答案:設(shè)l1,l2,底邊所在直線的斜率分別為k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如圖,由等腰三角形性質(zhì),可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底邊經(jīng)過點(diǎn)A(3,-8),代入點(diǎn)斜式,得出直線方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)46.從裝有兩個白球和兩個黃球的口袋中任取2個球,以下給出了三組事件:

①至少有1個白球與至少有1個黃球;

②至少有1個黃球與都是黃球;

③恰有1個白球與恰有1個黃球.

其中互斥而不對立的事件共有()組.

A.0

B.1

C.2

D.3答案:A47.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。48.平面α外一點(diǎn)P到平面α內(nèi)的四邊形的四條邊的距離都相等,且P在α內(nèi)的射影在四邊形內(nèi)部,則四邊形是()

A.梯形

B.圓外切四邊形

C.圓內(nèi)接四邊

D.任意四邊形答案:B49.設(shè)空間兩個不同的單位向量

a=(x1,y1,0),

b=(x2,y2,0)與向量

c=(1,1,1)的夾角都等于45°.

(1)求x1+y1和x1y1的值;

(2)求<

a,

b>的大?。鸢福海?)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?

c|a|?

|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°50.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.第3卷一.綜合題(共50題)1.如圖是2010年青年歌手大獎賽中,七位評委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中m為數(shù)字0~9中的

一個),去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關(guān)答案:由題意知去掉一個最高分和一個最低分以后,兩組數(shù)據(jù)都有五個數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B2.已知e1

,

e2是夾角為60°的兩個單位向量,且向量a=e1+2e2,則|a|=______.答案:由題意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故為:73.復(fù)數(shù)32i+11-i的虛部是______.答案:復(fù)數(shù)32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復(fù)數(shù)的虛部是2,故為:24.已知a>0,b>0且a+b>2,求證:1+ba,1+ab中至少有一個小于2.答案:證明:假設(shè)1+ba,1+ab都不小于2,則1+ba≥2,1+ab≥2(6分)因為a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,這與已知a+b>2相矛盾,故假設(shè)不成立(12分)綜上1+ba,1+ab中至少有一個小于2.(14分)5.設(shè)點(diǎn)P對應(yīng)的復(fù)數(shù)為-3+3i,以原點(diǎn)為極點(diǎn),實軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A6.對于空間四點(diǎn)A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點(diǎn)共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點(diǎn)共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點(diǎn)共面,可得A、B、C、D四點(diǎn)有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.7.已知F1(-8,3),F(xiàn)2(2,3),動點(diǎn)P滿足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線.故為一條射線.8.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點(diǎn),則f(0)與f(1)()

A.均為正值

B.均為負(fù)值

C.一正一負(fù)

D.至少有一個等于0答案:D9.不等式的解集是(

A.

B.

C.

D.答案:D10.在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是C31+C41+C51+…+C71=25故為:2511.P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B12.已知平行四邊形的三個頂點(diǎn)A(-2,1),B(-1,3),C(3,4),求第四個頂點(diǎn)D的坐標(biāo).答案:若構(gòu)成的平行四邊形為ABCD1,即AC為一條對角線,設(shè)D1(x,y),則由AC中點(diǎn)也是BD1中點(diǎn),可得

-2+32=x-121+42=y+32,解得

x=2y=2,∴D1(2,2).同理可得,若構(gòu)成以AB為對角線的平行四邊形ACBD2,則D2(-6,0);以BC為對角線的平行四邊形ACD3B,則D3(4,6),∴第四個頂點(diǎn)D的坐標(biāo)為:(2,2),或(-6,0),或(4,6).13.下列輸入語句正確的是()

A.INPUT

x,y,z

B.INPUT“x=”;x,“y=”;y

C.INPUT

2,3,4

D.INPUT

x=2答案:A14.已知x,y之間的一組數(shù)據(jù):

x0123y1357則y與x的回歸方程必經(jīng)過()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4)根據(jù)線性回歸方程一定過樣本中心點(diǎn),∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(diǎn)(1.5,4)故選C15.如圖,在四棱柱的上底面ABCD中,AB=DC,則下列向量相等的是()

A.AD與CB

B.OA與OC

C.AC與DB

D.DO與OB

答案:D16.拋物線y=ax2(其中a>0)的焦點(diǎn)坐標(biāo)是(

A.(,0)

B.(0,)

C.(,0)

D.(0,)答案:D17.若向量a=(-1,2),b=(-4,3),則a在b方向上的投影為()A.2B.22C.23D.10答案:設(shè)a與

b的夾角為θ,則cosθ=a?b|a|?|b|=4+65×5=25,∴則a在b方向上的投影為|a|?cosθ=5×25=2,故選A.18.如圖,橢圓C2x2a2+

y2b2=1的焦點(diǎn)為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)n為過原點(diǎn)的直線,l是與n垂直相交與點(diǎn)P,與橢圓相交于A,B兩點(diǎn)的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說出;若不存在,請說明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設(shè)A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),假設(shè)使OA?OB=0成立的直線l存在.(i)當(dāng)l不垂直于x軸時,設(shè)l的方程為y=kx+m,由l與n垂直相交于P點(diǎn),且|OP|=1得|m|1+

k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡得-5(k2+1)=0矛盾.即此時直線l不存在.(ii)當(dāng)l垂直于x軸時,滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點(diǎn)的坐標(biāo)為(1,32),(1,-32)或(-1,32),(-1,-32).當(dāng)x=1時,OA?OB=(1,32)?

(1,-32)=-54≠0.當(dāng)x=-1時,OA?OB=(-1,32)?

(-1,-32)=-54≠0.∴此時直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.19.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當(dāng)x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當(dāng)x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.20.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設(shè)是方程存在實數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A21.化簡:AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.22.以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程是()

A.

B.

C.

D.答案:C23.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗,則這種抽樣方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機(jī)確定起點(diǎn),每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.24.已知點(diǎn)P是拋物線y2=2x上的一個動點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A25.若直線y=x+b與圓x2+y2=2相切,則b的值為

______.答案:由題意知,直線y=x+b與圓x2+y2=2相切,∴2=|b|2,解得b=±2.故為:±2.26.已知橢圓的中心在原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個頂點(diǎn)B與兩個焦點(diǎn)F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.27.在下列各圖中,每個圖的兩個變量具有線性相關(guān)關(guān)系的圖是()

A.(1)(2)

B.(1)(3)

C.(2)(4)

D.(2)(3)答案:D28.正多面體只有______種,分別為______.答案:正多面體只有5種,分別為正四面體、正六面體、正八面體、正十二面體、正二十面體.故為:5,正四面體、正六面體、正八面體、正十二面體、正二十面體.29.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時,由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根時,-1≤a≤178故為:-1≤a≤17830.(選做題)

曲線(θ為參數(shù))與直線y=a有兩個公共點(diǎn),則實數(shù)a的取值范圍是(

).答案:0<a≤131.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是

______,過這個圓外一點(diǎn)P(2,3)的該圓的切線方程是

______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個圓外一點(diǎn)P(2,3)的該圓的切線,當(dāng)切線斜率不存在時,顯然x=2符合題意;當(dāng)切線斜率存在時,設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=

1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.32.求證:菱形各邊中點(diǎn)在以對角線的交點(diǎn)為圓心的同一個圓上.答案:已知:如圖,菱形ABCD的對角線AC和BD相交于點(diǎn)O.求證:菱形ABCD各邊中點(diǎn)M、N、P、Q在以O(shè)為圓心的同一個圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點(diǎn),∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點(diǎn)在以O(shè)為圓心OM為半徑的圓上.所以菱形各邊中點(diǎn)在以對角線的交點(diǎn)為圓心的同一個圓上.33.正方體ABCD-A1B1C1D1的棱長為2,MN是它的內(nèi)切球的一條弦(把球面上任意兩點(diǎn)之間的線段稱為球的弦),P為正方體表面上的動點(diǎn),當(dāng)弦MN最長時.PM?PN的最大值為______.答案:設(shè)點(diǎn)O是此正方體的內(nèi)切球的球心,半徑R=1.∵PM?PN≤|PM|

|PN|,∴當(dāng)點(diǎn)P,M,N三點(diǎn)共線時,PM?PN取得最大值.此時PM?PN≤(PO-MO)?(PO+ON),而MO=ON,∴PM?PN≤PO2-R2=PO2-1,當(dāng)且僅當(dāng)點(diǎn)P為正方體的一個頂點(diǎn)時上式取得最大值,∴(PM?PN)max=(232)2-1=2.故為2.34.已知實數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論