版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年上海電子信息職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.一個十二面體共有8個頂點,其中2個頂點處各有6條棱,其它頂點處都有相同的棱,則其它頂點處的棱數(shù)為______.答案:此十二面體如右圖,數(shù)形結(jié)合可得則其它頂點處的棱數(shù)為4故為42.集合A={1,2}的子集有幾個()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4個.故選B.3.已知原點O(0,0),則點O到直線4x+3y+5=0的距離等于
______.答案:利用點到直線的距離公式得到d=|5|42+32=1,故為1.4.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A5.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).6.設(shè)D為△ABC的邊AB上一點,P為△ABC內(nèi)一點,且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.7.已知2,4,2x,4y四個數(shù)的平均數(shù)是5而5,7,4x,6y四個數(shù)的平均數(shù)是9,則xy的值是______.答案:因為2,4,2x,4y四個數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.8.設(shè)a,b,c都是正數(shù),求證:
(1)(a+b+c)≥9;
(2)(a+b+c)≥.答案:證明略解析:證明
(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當且僅當a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當且僅當a=b=c時,等號成立.9.在直角坐標系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標系中,10.若數(shù)列{an}是等差數(shù)列,對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,對于dn>0,則dn=______時,數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項均為正數(shù)的等比數(shù)列,則當dn=nC1C2C3Cn時,數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn11.求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).答案:證明見過程解析:求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).12.在正方體ABCD-A1B1C1D1中,若E為A1C1中點,則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點,AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故選B.13.由小正方體木塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小正方體木塊有()
A.6塊
B.7塊
C.8塊
D.9塊答案:B14.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.15.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設(shè)半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因為10=2r+l≥22rl,所以rl≤252,所以s≤254故選B16.直線y=3x+1的斜率是()A.1B.2C.3D.4答案:因為直線y=3x+1是直線的斜截式方程,所以直線的斜率是3.故選C.17.若對n個向量a1,a2,…,an,存在n個不全為零的實數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設(shè)a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,118.與原數(shù)據(jù)單位不一樣的是()
A.眾數(shù)
B.平均數(shù)
C.標準差
D.方差答案:D19.如圖,AB是⊙O的直徑,點D在AB的延長線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°20.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標為()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A21.實數(shù)系的結(jié)構(gòu)圖如圖所示,其中1、2、3三個方格中的內(nèi)容分別為()
A.有理數(shù)、零、整數(shù)
B.有理數(shù)、整數(shù)、零
C.零、有理數(shù)、整數(shù)
D.整數(shù)、有理數(shù)、零
答案:B22.已知a,b,c是空間的一個基底,且實數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:023.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運動弧長到達點Q,則點Q的坐標為()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C24.用“輾轉(zhuǎn)相除法”求得和的最大公約數(shù)是(
)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)25.下列圖形中不一定是平面圖形的是()
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B26.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為
______.答案:如圖,過雙曲線的頂點A、焦點F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為327.以拋物線y2=2px(p>0)的焦半徑|PF|為直徑的圓與y軸位置關(guān)系是______.答案:根據(jù)拋物線定義可知|PF|=p2,而圓的半徑為p2,圓心為(p2,0),|PF|正好等于所求圓的半徑,進而可推斷圓與y軸位置關(guān)系是相切.28.若矩陣滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為()
A.24
B.48
C.144
D.288答案:C29.已知兩點A(2,1),B(3,3),則直線AB的斜率為()
A.2
B.
C.
D.-2答案:A30.若命題P(n)對n=k成立,則它對n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()
A.P(n)對所有自然數(shù)n都成立
B.P(n)對所有正偶數(shù)n成立
C.P(n)對所有正奇數(shù)n都成立
D.P(n)對所有大于1的自然數(shù)n成立答案:B31.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當cost=0,sint=1時,s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當cost=1,sint=0時,s=cost+isint=1則f(s)=1+s+s2+…sn=n+132.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.y=0.7x+0.35,那么表中m的值為______.
x3456y2.5m44.5答案:∵根據(jù)所給的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵這組數(shù)據(jù)的樣本中心點在線性回歸直線上,∴11+m4=0.7×4.5+0.35,∴m=3,故為:333.袋子A和袋子B均裝有紅球和白球,從A中摸出一個紅球的概率是13,從B中摸出一個紅球的概率是P.
(1)從A中有放回地摸球,每次摸出一個,共摸5次,求恰好有3次摸到紅球的概率;
(2)若A、B兩個袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率為25,求P的值.答案:(1)每次從A中摸一個紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨立重復(fù)試驗的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個球,A、B兩個袋子中的球數(shù)之比為1:2,則B中有2m個球,∵將A、B中的球裝在一起后,從中摸出一個紅球的概率是25,∴13m+2mp3m=25,解得p=1330.34.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機測得10對母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y═34.92+0.78x,因此,當母親的身高為161cm時,可以估計女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當x=161cm時,y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.35.管理人員從一池塘中撈出30條魚做上標記,然后放回池塘,將帶標記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.36.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()
A.{2,1}
B.{(2,1)}
C.{1,2}
D.{(1,2)}答案:D37.ab>0,則①|(zhì)a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四個式中正確的是()
A.①②
B.②③
C.①④
D.②④答案:C38.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C39.從單詞“equation”選取5個不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個B.480個C.720個D.840個答案:要選取5個字母時首先從其它6個字母中選3個有C63種結(jié)果,再與“qu“組成的一個元素進行全排列共有C63A44=480,故選B.40.已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:200641.在15個村莊中有7個村莊交通不方便,現(xiàn)從中任意選10個村莊,用X表示這10個村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042942.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時將量詞對任意的x∈R變?yōu)榇嬖趯崝?shù)x,再將不等號≥變?yōu)椋技纯桑蕿椋捍嬖趯崝?shù)x,使得x<2.43.已知△ABC三個頂點的坐標為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.44.如圖,半徑為R的球O中有一內(nèi)接圓柱.當圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是______.
答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當且僅當α=π4時,sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR245.極坐標方程pcosθ=表示()
A.一條平行于x軸的直線
B.一條垂直于x軸的直線
C.一個圓
D.一條拋物線答案:B46.已知菱形ABCD的頂點A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1.
(Ⅰ)當直線BD過點(0,1)時,求直線AC的方程;
(Ⅱ)當∠ABC=60°時,求菱形ABCD面積的最大值.答案:(Ⅰ)由題意得直線BD的方程為y=x+1.因為四邊形ABCD為菱形,所以AC⊥BD.于是可設(shè)直線AC的方程為y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因為A,C在橢圓上,所以△=-12n2+64>0,解得-433<n<433.設(shè)A,C兩點坐標分別為(x1,y1),(x2,y2),則x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中點坐標為(3n4,n4).由四邊形ABCD為菱形可知,點(3n4,n4)在直線y=x+1上,所以n4=3n4+1,解得n=-2.所以直線AC的方程為y=-x-2,即x+y+2=0.(Ⅱ)因為四邊形ABCD為菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面積S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以當n=0時,菱形ABCD的面積取得最大值43.47.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量
(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量
(單位:千瓦時)低谷電價(單位:
元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為______元(用數(shù)字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.48.用0.618法確定的試點,則經(jīng)過(
)次試驗后,存優(yōu)范圍縮小為原來的0.6184倍.答案:549.對于實數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.50.三棱錐P-ABC中,M為BC的中點,以為基底,則可表示為()
A.
B.
C.
D.答案:D第2卷一.綜合題(共50題)1.用反證法證明命題“如果a>b,那么a3>b3“時,下列假設(shè)正確的是()
A.a(chǎn)3<b3
B.a(chǎn)3<b3或a3=b3
C.a(chǎn)3<b3且a3=b3
D.a(chǎn)3>b3答案:B2.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當0<a<1時函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當a>1時函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.3.函數(shù)y=ax2+1的圖象與直線y=x相切,則a=______.答案:設(shè)切點為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.4.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標等于_____5.將6位志愿者分成4組,每組至少1人,分赴世博會的四個不同場館服務(wù),不同的分配方案有______種(用數(shù)字作答).答案:由題意,六個人分為四組,若有三個人一組,則四組人數(shù)為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會的四個不同場館服務(wù),不同的分配方案有(20+45)×A44=1560種故為:1560.6.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()
A.
B.
C.或
D.或答案:C7.已知點P為△ABC所在平面上的一點,且,其中t為實數(shù),若點P落在△ABC的內(nèi)部,則t的取值范圍是()
A.
B.
C.
D.答案:D8.用隨機數(shù)表法從100名學生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機數(shù)表法從100名學生選一個,共有100種結(jié)果,滿足條件的事件是抽取20個,∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.9.如圖,PA,PB切⊙O于
A,B兩點,AC⊥PB,且與⊙O相交于
D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因為垂直∠DCB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°10.直角坐標xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()
A.25個
B.36個
C.100個
D.225個答案:D11.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C12.若隨機變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()
A.2×0.44
B.2×0.45
C.3×0.44
D.3×0.64答案:C13.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,則k的值為?
(2)若α∈N,又三點A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=214.直線(t為參數(shù))的傾斜角等于()
A.
B.
C.
D.答案:A15.設(shè)求證:答案:證明見解析解析:證明:∵
∴∴,∴本題利用,對中每項都進行了放縮,從而得到可以求和的數(shù)列,達到化簡的目的。16.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B17.拋物線y=3x2的焦點坐標是______.答案:化為標準方程為x2=13y,∴2p=13,∴p2=
112,∴焦點坐標是(0,112).故為(0,112)18.長為3的線段AB的端點A、B分別在x軸、y軸上移動,,則點C的軌跡是()
A.線段
B.圓
C.橢圓
D.雙曲線答案:C19.已知=(3,4),=(5,12),與則夾角的余弦為()
A.
B.
C.
D.答案:A20.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()
A.若2x+1是整數(shù),則x∈Z
B.若2x+1是奇數(shù),則x∈Z
C.若2x+1是偶數(shù),則x∈Z
D.若2x+1能被3整除,則x∈Z
E.若2x+1是整數(shù),則x∈Z答案:A21.已知拋物線y2=4x上兩定點A、B分別在對稱軸兩側(cè),F(xiàn)為焦點,且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點A在第一象限,B點在第四象限.如圖.拋物線的焦點F(1,0),點A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0
24+y0-4|5=|12(y0+1)2-92|5
…(9分)所以當y0=-1時,d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274
…(11分)此時P點坐標為(14,-1).…(12分).22.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3423.隨機變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數(shù),則P()的值為()
A.
B.
C.
D.
答案:D24.方程ax2+2x+1=0至少有一個負的實根的充要條件是()
A.0<a≤1
B.a(chǎn)<1
C.a(chǎn)≤1
D.0<a≤1或a<0答案:C25.下列關(guān)于算法的說法中正確的個數(shù)是()
①求解某一類問題的算法是唯一的;
②算法必須在有限步操作之后停止;
③算法的每一步操作必須是明確的,不能有歧義或模糊;
④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個數(shù)是3.故選C.26.已知雙曲線的焦點在y軸,實軸長為8,離心率e=2,過雙曲線的弦AB被點P(4,2)平分;
(1)求雙曲線的標準方程;
(2)求弦AB所在直線方程;
(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點在y軸,∴設(shè)雙曲線的標準方程為y2a2-x2b2=1;∵實軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標準方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點坐標分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.27.一支田徑隊有男運動員112人,女運動員84人,用分層抽樣的方法從全體男運動員中抽出了32人,則應(yīng)該從女運動員中抽出的人數(shù)為()
A.12
B.13
C.24
D.28答案:C28.在△ABC中,AB=2,AC=1,D為BC的中點,則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.29.如圖是一個方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時以每一分鐘一格的速度向東、西、南、北四個方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個方向行走的概率均為q
(1)p和q的值;
(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時間內(nèi)可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)
設(shè)在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為37230430.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數(shù)解,求a的值.答案:設(shè)方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-331.已知f(x)=,若f(x0)>1,則x0的取值范圍是()
A.(0,1)
B.(-∞,0)∪(0,+∞)
C.(-∞,0)∪(1,+∞)
D.(1,+∞)答案:C32.已知命題p:?x∈R,x2-x+1>0,則命題¬p
是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.33.拋物線y=14x2的焦點坐標是______.答案:拋物線y=14x2
即x2=4y,∴p=2,p2=1,故焦點坐標是(0,1),故為(0,1).34.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點,若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.35.把的圖象按向量平移得到的圖象,則可以是(
)A.B.C.D.答案:D解析:∵,∴要得到的圖象,需將的圖象向右平移個單位長度,故選D。36.設(shè)U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}37.已知向量a=(1,1)與b=(2,3),用坐標表示2a+b為______.答案:根據(jù)題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).38.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.39.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對于定義域中的一切實數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠成立故選D.40.已知A(3,-2),B(-5,4),則以AB為直徑的圓的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB為直徑的圓的圓心為(-1,1),半徑r=(-1-3)2+(1+2)2=5,∴圓的方程為(x+1)2+(y-1)2=25故選B.41.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復(fù)數(shù)z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實數(shù)a的值.答案:(Ⅰ)設(shè)z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復(fù)數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8342.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點,若從M點繞圓柱體的側(cè)面到達N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開輔平,得出圓柱的側(cè)面展開圖,從M點繞圓柱體的側(cè)面到達N點,實際上是從側(cè)面展開圖的長方形的一個頂點M到達不相鄰的另一個頂點N.而兩點間以線段的長度最短.所以最短路線就是側(cè)面展開圖中長方形的一條對角線.如圖所示.43.關(guān)于x的方程x2+4x+k=0有一個根為-2+3i(i為虛數(shù)單位),則實數(shù)k=______.答案:由韋達定理(一元二次方程根與系數(shù)關(guān)系)可得:x1?x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,則k=(-2-3i)(-2+3i)=13故為:1344.(文)橢圓的一個焦點與短軸的兩端點構(gòu)成一個正三角形,則該橢圓的離心率為()
A.
B.
C.
D.不確定答案:C45.不等式log12(x2-2x-15)>log12(x+13)的解集為______.答案:滿足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,則不等式log12(x2-2x-15)>log12(x+13)的解集為(-4,-3)∪(5,7)故為:(-4,-3)∪(5,7).46.點(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D47.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(
)
A.
B.
C.7
D.答案:D48.輸入3個數(shù),輸出其中最大的公約數(shù),編程序完成上述功能.答案:INPUT
m,n,kr=m
MOD
nWHILE
r<>0m=nn=rr=m
MOD
nWENDr=k
MOD
nWHILE
r<>0k=nn=rr=k
MOD
nWENDPRINT
nEND49.不等式log2(x+1)<1的解集為()
A.{x|0<x<1}
B.{x|-1<x≤0}
C.{x|-1<x<1}
D.{x|x>-1}答案:C50.如圖,正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F
是棱CD上的動點.
(Ⅰ)試確定點F的位置,使得D1E⊥平面AB1F;
(Ⅱ)當D1E⊥平面AB1F時,求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大小.答案:(I)由題意可得:以A為原點,分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標系,不妨設(shè)正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當點F是CD的中點時,D1E⊥平面AB1F.(II)當D1E⊥平面AB1F時,F(xiàn)是CD的中點,F(xiàn)(12,1,0)由正方體的結(jié)構(gòu)特征可得:平面AEF的一個法向量為m=(0,0,1),設(shè)平面C1EF的一個法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n
=0,即y=-2zx=y,所以取平面C1EF的一個法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因為當把m,n都移向這個二面角內(nèi)一點時,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因為BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.第3卷一.綜合題(共50題)1.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)
=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.2.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術(shù)平方根運算;“ABS()”表示求絕對值運算.3.給出下列結(jié)論:
(1)兩個變量之間的關(guān)系一定是確定的關(guān)系;
(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;
(3)回歸分析是對具有函數(shù)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法;
(4)回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法.
以上結(jié)論中,正確的有幾個?()
A.1
B.2
C.3
D.4答案:A4.已知大于1的正數(shù)x,y,z滿足x+y+z=33.
(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當且僅當x=y=z=3時,等號成立.故所求的最小值是3.5.如圖所示的程序框圖,運行相應(yīng)的程序,若輸出S的值為254,則判斷框①中應(yīng)填入的條件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出滿足條件S=2+22+23+…+2n=126時S的值∵2+22+23+…+27=254,故最后一次進行循環(huán)時n的值為7,故判斷框中的條件應(yīng)為n≤7.故選C.6.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點坐標為
______.答案:設(shè)C(x,y,z),則:
AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)7.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,則全班學生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:28.函數(shù)y=2|x|的定義域為[a,b],值域為[1,16],當a變動時,函數(shù)b=g(a)的圖象可以是()A.
B.
C.
D.
答案:根據(jù)選項可知a≤0a變動時,函數(shù)y=2|x|的定義域為[a,b],值域為[1,16],∴2|b|=16,b=4故選B.9.已知,求證:答案:證明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等號成立的條件分別為,,故不能同時成立,從而.10.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.11.直線ax+by=1與圓x2+y2=1有兩不同交點,則點P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點,∴1a2+b2<1即a2+b2>1.故為:點在圓外.12.如圖,在復(fù)平面內(nèi),點A表示復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z對應(yīng)的點是()A.AB.BC.CD.D答案:兩個復(fù)數(shù)是共軛復(fù)數(shù),兩個復(fù)數(shù)的實部相同,下部相反,對應(yīng)的點關(guān)于x軸對稱.所以點A表示復(fù)數(shù)z的共軛復(fù)數(shù)的點是B.故選B.13.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為()
A.
B.3
C.2
D.2答案:A14.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.15.甲、乙兩人投籃,投中的概率分別為0.6,0.7,若兩人各投2次,則兩人都投中1次的概率為______.答案:兩人都投中1次的概率為C210.6×0.4×C210.7×0.3=0.2016故為:0.201616.把平面上一切單位向量歸結(jié)到共同的起點,那么這些向量的終點所構(gòu)成的圖形是
______.答案:把平面上一切單位向量歸結(jié)到共同的起點,那么這些向量的終點到起點的距離都等于1,所以,由圓的定義得,這些向量的終點所構(gòu)成的圖形是半徑為1的圓.17.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為
______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c18.已知P(B|A)=,P(A)=,則P(AB)等于()
A.
B.
C.
D.答案:C19.已知R為實數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點,故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.20.下列特殊命題中假命題的個數(shù)是()
①有的實數(shù)是無限不循環(huán)小數(shù);
②有些三角形不是等腰三角形;
③有的菱形是正方形.
A.0
B.1
C.2
D.3答案:B21.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為______.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13222.有50件產(chǎn)品編號從1到50,現(xiàn)在從中抽取抽取5件檢驗,用系統(tǒng)抽樣確定所抽取的編號為()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D23.若復(fù)數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實數(shù)a的值為______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復(fù)數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:1224.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:225.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時,結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設(shè)不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立26.設(shè)點P對應(yīng)的復(fù)數(shù)為-3+3i,以原點為極點,實軸正半軸為極軸建立極坐標系,則點P的極坐標為()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A27.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過點A(2,3),則過兩點P1(a1,b1),P2(a2,b2)的直線方程為______.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點,∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點P1(a1,b1),P2(a2,b2)的坐標都適合方程2x+3y+1=0,∴兩點(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.28.求過點A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.29.在極坐標系中,過點(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標方程是______.答案:(22,π4)的直角坐標為:(2,2),圓ρ=4sinθ的直角坐標方程為:x2+y2-4y=0;顯然,圓心坐標(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標方程是:ρcosθ=2故為:ρcosθ=230.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關(guān)于函數(shù)D(t)的性質(zhì)敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調(diào)函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域為{0,1};有理數(shù)和無理數(shù)正負關(guān)于原點對稱,所以函數(shù)D(t)的圖象關(guān)于y軸對稱,所以函數(shù)是偶函數(shù);對于不同的有理數(shù)x對應(yīng)的函數(shù)值相等,所以函數(shù)不是單調(diào)函數(shù);因為任取一個非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無理數(shù)為無理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項C不正確.故選C.31.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1532.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A33.(文)若拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合,則實數(shù)p的值是______.答案:∵x26+y22=1
中a2=6,b2=2,∴c2=4,c=2∴右焦點坐標為(2,0)∵拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合∴拋物線y2=2px中p=4故為434.設(shè)D為△ABC的邊AB上一點,P為△ABC內(nèi)一點,且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.35.設(shè)A、B、C表示△ABC的三個內(nèi)角的弧度數(shù),a,b,c表示其對邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設(shè)A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設(shè)A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新加坡租房短期合同范例
- 織毛毯原料購買合同范例
- 車輛買賣定金合同范例
- 香港車位租售合同范例
- 廚具居間合同范例
- 燕京啤酒客戶經(jīng)銷合同范例
- 高嶺土原礦購銷合同范例
- 渣土消納合同范例
- 品牌維修外包合同范例
- 紅棗買賣合同范例
- 2024年人教版三年級上數(shù)學教學計劃和進度安排
- 《電能計量知識介紹》課件
- 2025屆甘肅省武威市重點中學高三六校第一次聯(lián)考英語試卷含解析
- 東方明珠課件
- 2024年教師師德師風工作計劃(2篇)
- 物流行業(yè)服務(wù)質(zhì)量保障制度
- 養(yǎng)老院物資采購流程及制度
- 眼鏡店年終總結(jié)及計劃
- 公務(wù)用車車輛安全培訓課件
- 《安徽省人力資本對經(jīng)濟高質(zhì)量發(fā)展影響研究》
- 化妝品技術(shù)服務(wù)合同協(xié)議
評論
0/150
提交評論