空間解析幾何初步_第1頁
空間解析幾何初步_第2頁
空間解析幾何初步_第3頁
空間解析幾何初步_第4頁
空間解析幾何初步_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第七章空間解析幾何初步ⅦⅡⅢⅥⅤⅧⅣ一、空間直角坐標(biāo)系由三條互相垂直的數(shù)軸按右手規(guī)則組成一個(gè)空間直角坐標(biāo)系.

坐標(biāo)原點(diǎn)

坐標(biāo)軸x軸(橫軸)y軸(縱軸)z軸(豎軸)過空間一定點(diǎn)o,

坐標(biāo)面

卦限(八個(gè))zox面1.空間直角坐標(biāo)系的基本概念機(jī)動(dòng)目錄上頁下頁返回結(jié)束Ⅰ在直角坐標(biāo)系下坐標(biāo)軸上的點(diǎn)

P,Q,R;坐標(biāo)面上的點(diǎn)A,B,C點(diǎn)

M特殊點(diǎn)的坐標(biāo):有序數(shù)組(稱為點(diǎn)M的坐標(biāo))原點(diǎn)O(0,0,0);機(jī)動(dòng)目錄上頁下頁返回結(jié)束坐標(biāo)軸:坐標(biāo)面:機(jī)動(dòng)目錄上頁下頁返回結(jié)束二.兩點(diǎn)間的距離公式兩點(diǎn)間的距離公式:對兩點(diǎn)與機(jī)動(dòng)目錄上頁下頁返回結(jié)束|AB|例4.

求證以證:即為等腰三角形.的三角形是等腰三角形.為頂點(diǎn)機(jī)動(dòng)目錄上頁下頁返回結(jié)束例5.

在z軸上求與兩點(diǎn)等距解:

設(shè)該點(diǎn)為解得故所求點(diǎn)為及思考:(1)如何求在xoy面上與A,B等距離之點(diǎn)的軌跡方程?(2)如何求在空間與A,B等距離之點(diǎn)的軌跡方程?離的點(diǎn).機(jī)動(dòng)目錄上頁下頁返回結(jié)束提示(1)設(shè)動(dòng)點(diǎn)為利用得(2)設(shè)動(dòng)點(diǎn)為利用得且機(jī)動(dòng)目錄上頁下頁返回結(jié)束四、二次曲面第二節(jié)一、曲面方程的概念二、旋轉(zhuǎn)曲面

三、柱面機(jī)動(dòng)目錄上頁下頁返回結(jié)束曲面及其方程第七章一、曲面方程的概念求到兩定點(diǎn)A(1,2,3)

和B(2,-1,4)等距離的點(diǎn)的化簡得即說明:動(dòng)點(diǎn)軌跡為線段

AB的垂直平分面.引例:顯然在此平面上的點(diǎn)的坐標(biāo)都滿足此方程,不在此平面上的點(diǎn)的坐標(biāo)不滿足此方程.解:設(shè)軌跡上的動(dòng)點(diǎn)為軌跡方程.

機(jī)動(dòng)目錄上頁下頁返回結(jié)束定義1.如果曲面

S

與方程

F(x,y,z)=0有下述關(guān)系:(1)曲面

S上的任意點(diǎn)的坐標(biāo)都滿足此方程;則F(x,y,z)=0

叫做曲面

S

的方程,曲面S叫做方程F(x,y,z)=0的圖形.兩個(gè)基本問題:(1)已知一曲面作為點(diǎn)的幾何軌跡時(shí),(2)不在曲面S上的點(diǎn)的坐標(biāo)不滿足此方程,求曲面方程.(2)已知方程時(shí),研究它所表示的幾何形狀(必要時(shí)需作圖).機(jī)動(dòng)目錄上頁下頁返回結(jié)束故所求方程為例1.

求動(dòng)點(diǎn)到定點(diǎn)方程.特別,當(dāng)M0在原點(diǎn)時(shí),球面方程為解:

設(shè)軌跡上動(dòng)點(diǎn)為即依題意距離為

R

的軌跡表示上(下)球面.機(jī)動(dòng)目錄上頁下頁返回結(jié)束例2.研究方程解:

配方得此方程表示:說明:如下形式的三元二次方程

(A≠0)都可通過配方研究它的圖形.其圖形可能是的曲面.表示怎樣半徑為的球面.球心為一個(gè)球面,或點(diǎn),或虛軌跡.機(jī)動(dòng)目錄上頁下頁返回結(jié)束定義2.一條平面曲線二、旋轉(zhuǎn)曲面

繞其平面上一條定直線旋轉(zhuǎn)一周所形成的曲面叫做旋轉(zhuǎn)曲面.該定直線稱為旋轉(zhuǎn)軸.例如:機(jī)動(dòng)目錄上頁下頁返回結(jié)束建立yoz面上曲線C

z

軸旋轉(zhuǎn)所成曲面的方程:故旋轉(zhuǎn)曲面方程為當(dāng)繞

z軸旋轉(zhuǎn)時(shí),若點(diǎn)給定yoz

面上曲線

C:則有則有該點(diǎn)轉(zhuǎn)到機(jī)動(dòng)目錄上頁下頁返回結(jié)束思考:當(dāng)曲線C繞y軸旋轉(zhuǎn)時(shí),方程如何?機(jī)動(dòng)目錄上頁下頁返回結(jié)束例4.

求坐標(biāo)面xoz

上的雙曲線分別繞

x軸和

z

軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)曲面方程.解:繞

x

軸旋轉(zhuǎn)繞

z

軸旋轉(zhuǎn)這兩種曲面都叫做旋轉(zhuǎn)雙曲面.所成曲面方程為所成曲面方程為機(jī)動(dòng)目錄上頁下頁返回結(jié)束旋轉(zhuǎn)橢球面旋轉(zhuǎn)拋物面三、柱面引例.分析方程表示怎樣的曲面.的坐標(biāo)也滿足方程解:在xoy面上,表示圓C,沿曲線C平行于z軸的一切直線所形成的曲面稱為圓故在空間過此點(diǎn)作柱面.對任意

z,平行z

軸的直線

l,表示圓柱面在圓C上任取一點(diǎn)其上所有點(diǎn)的坐標(biāo)都滿足此方程,機(jī)動(dòng)目錄上頁下頁返回結(jié)束定義3.平行定直線并沿定曲線C移動(dòng)的直線l形成的軌跡叫做柱面.表示拋物柱面,母線平行于z軸;準(zhǔn)線為xoy面上的拋物線.

z軸的橢圓柱面.z軸的平面.表示母線平行于(且z

軸在平面上)表示母線平行于C叫做準(zhǔn)線,l

叫做母線.機(jī)動(dòng)目錄上頁下頁返回結(jié)束一般地,在三維空間柱面,柱面,平行于x

軸;平行于

y

軸;平行于

z

軸;準(zhǔn)線

xoz

面上的曲線l3.母線柱面,準(zhǔn)線

xoy

面上的曲線l1.母線準(zhǔn)線

yoz面上的曲線l2.母線機(jī)動(dòng)目錄上頁下頁返回結(jié)束內(nèi)容小結(jié)1.空間曲面三元方程球面旋轉(zhuǎn)曲面如,曲線繞z軸的旋轉(zhuǎn)曲面:

柱面如,曲面表示母線平行z軸的柱面.又如,橢圓柱面,雙曲柱面,拋物柱面等.機(jī)動(dòng)目錄上頁下頁返回結(jié)束斜率為1的直線平面解析幾何中空間解析幾何中方程平行于y軸的直線平行于yoz面的平面圓心在(0,0)半徑為3的圓以z軸為中心軸的圓柱面平行于z軸的平面思考與練習(xí)1.指出下列方程的圖形:機(jī)動(dòng)目錄上頁下頁返回結(jié)束第四節(jié)一、平面的點(diǎn)法式方程二、平面的一般方程機(jī)動(dòng)目錄上頁下頁返回結(jié)束平面及其方程第七章當(dāng)平面與三坐標(biāo)軸的交點(diǎn)分別為此式稱為平面的截距式方程.時(shí),平面方程為機(jī)動(dòng)目錄上頁下頁返回結(jié)束二、平面的一般方程設(shè)有三元一次方程以上兩式相減,得平面的點(diǎn)法式方程任取一組滿足上述方程的數(shù)則②機(jī)動(dòng)目錄上頁下頁返回結(jié)束特殊情形?

當(dāng)

D=0時(shí),Ax+By+Cz=0表示

通過原點(diǎn)的平面;?當(dāng)

A=0時(shí),By+Cz+D=0平面平行于x軸;?

Ax+Cz+D=0表示?

Ax+By+D=0表示?

Cz+D=0表示?Ax+D=0表示?

By+D=0表示平行于

y

軸的平面;平行于

z

軸的平面;平行于xoy面的平面;平行于yoz面的平面;平行于zox面的平面.機(jī)動(dòng)目錄上頁下頁返回結(jié)束此方程稱為平面的一般方程.例2.

求通過x軸和點(diǎn)(4,–3,–1)的平面方程.解:因平面通過

x軸,設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論