版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,且、都是全集(為實(shí)數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.2.已知向量,且,則m=()A.?8 B.?6C.6 D.83.一個(gè)幾何體的三視圖如圖所示,正視圖、側(cè)視圖和俯視圖都是由一個(gè)邊長(zhǎng)為的正方形及正方形內(nèi)一段圓弧組成,則這個(gè)幾何體的表面積是()A. B. C. D.4.已知,若方程有唯一解,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.函數(shù)(或)的圖象大致是()A. B. C. D.6.已知復(fù)數(shù)和復(fù)數(shù),則為A. B. C. D.7.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.548.若的展開式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.19.是虛數(shù)單位,則()A.1 B.2 C. D.10.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.11.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.函數(shù),,則“的圖象關(guān)于軸對(duì)稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足,且y≥?1,則3x+y的最大值_____14.在各項(xiàng)均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.15.已知向量,,,則_________.16.若函數(shù)與函數(shù),在公共點(diǎn)處有共同的切線,則實(shí)數(shù)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍.18.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對(duì)任意的實(shí)數(shù)恒成立,求的取值范圍.19.(12分)在中,角所對(duì)的邊分別為,,的面積.(1)求角C;(2)求周長(zhǎng)的取值范圍.20.(12分)在極坐標(biāo)系中,直線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點(diǎn)的直角坐標(biāo).21.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點(diǎn)為,當(dāng)變化時(shí),點(diǎn)的軌跡是曲線(1)求曲線的普通方程;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,,點(diǎn)為射線與曲線的交點(diǎn),求點(diǎn)的極徑.22.(10分)已知函數(shù).(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當(dāng)時(shí),要使恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補(bǔ)集和交集定義可求得結(jié)果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算,涉及到一元二次不等式和函數(shù)定義域的求解;關(guān)鍵是能夠根據(jù)韋恩圖確定所求集合.2、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.3、C【解析】
畫出直觀圖,由球的表面積公式求解即可【詳解】這個(gè)幾何體的直觀圖如圖所示,它是由一個(gè)正方體中挖掉個(gè)球而形成的,所以它的表面積為.故選:C【點(diǎn)睛】本題考查三視圖以及幾何體的表面積的計(jì)算,考查空間想象能力和運(yùn)算求解能力.4、B【解析】
求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實(shí)根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時(shí),根據(jù),,解得舍去),則的范圍是,故選:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.5、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.6、C【解析】
利用復(fù)數(shù)的三角形式的乘法運(yùn)算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點(diǎn)睛】熟練掌握復(fù)數(shù)的三角形式的乘法運(yùn)算法則是解題的關(guān)鍵,復(fù)數(shù)問題高考必考,常見考點(diǎn)有:點(diǎn)坐標(biāo)和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,點(diǎn)的象限和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,復(fù)數(shù)的加減乘除運(yùn)算,復(fù)數(shù)的模長(zhǎng)的計(jì)算.7、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.8、B【解析】
由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.9、C【解析】
由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長(zhǎng)公式,即可求解.【詳解】由.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.10、B【解析】
利用正態(tài)分布密度曲線的對(duì)稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點(diǎn)睛】本題考查利用正態(tài)分布密度曲線的對(duì)稱性求概率,屬于基礎(chǔ)題.11、C【解析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡(jiǎn)單題.12、B【解析】
根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對(duì)稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對(duì)稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對(duì)稱.所以,“的圖象關(guān)于軸對(duì)稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對(duì)稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.14、【解析】
利用等差中項(xiàng)的性質(zhì)和等比數(shù)列通項(xiàng)公式得到關(guān)于的方程,解方程求出代入等比數(shù)列通項(xiàng)公式即可.【詳解】因?yàn)?,成等差?shù)列,所以,由等比數(shù)列通項(xiàng)公式得,,所以,解得或,因?yàn)?,所以,所以等比?shù)列的通項(xiàng)公式為.故答案為:【點(diǎn)睛】本題考查等差中項(xiàng)的性質(zhì)和等比數(shù)列通項(xiàng)公式;考查運(yùn)算求解能力和知識(shí)綜合運(yùn)用能力;熟練掌握等差中項(xiàng)和等比數(shù)列通項(xiàng)公式是求解本題的關(guān)鍵;屬于中檔題.15、2【解析】
由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.16、【解析】
函數(shù)的定義域?yàn)?,求出?dǎo)函數(shù),利用曲線與曲線公共點(diǎn)為由于在公共點(diǎn)處有共同的切線,解得,,聯(lián)立解得的值.【詳解】解:函數(shù)的定義域?yàn)?,,,設(shè)曲線與曲線公共點(diǎn)為,由于在公共點(diǎn)處有共同的切線,∴,解得,.由,可得.聯(lián)立,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)通過討論的范圍,將絕對(duì)值符號(hào)去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)問題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當(dāng)時(shí),原不等式可化為,解得;當(dāng)時(shí),原不等式可化為,解得,不滿足,舍去;當(dāng)時(shí),原不等式可化為,解得,所以不等式的解集為.(2)因?yàn)?,所以若函?shù)存在零點(diǎn)則可轉(zhuǎn)化為函數(shù)與的圖像存在交點(diǎn),函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知.【點(diǎn)睛】該題考查的是有關(guān)不等式的問題,涉及到的知識(shí)點(diǎn)有分類討論求絕對(duì)值不等式的解集,將零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)的問題來解決,數(shù)形結(jié)合思想的應(yīng)用,屬于簡(jiǎn)單題目.18、(1);(2)【解析】試題分析:(1)將絕對(duì)值不等式兩邊平方,化為二次不等式求解.(2)將問題化為分段函數(shù)問題,通過分類討論并根據(jù)恒成立問題的解法求解即可.試題解析:整理得解得①②解得③,且無限趨近于4,綜上的取值范圍是19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由可得到,代入,結(jié)合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結(jié)合正弦定理可得到,利用,,可得到,進(jìn)而可求出周長(zhǎng)的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長(zhǎng)為.∵,∴,∴,∴的周長(zhǎng)的取值范圍為.【點(diǎn)睛】本題考查了正弦定理、余弦定理在解三角形中的運(yùn)用,考查了三角形的面積公式,考查了學(xué)生分析問題、解決問題的能力,屬于基礎(chǔ)題.20、【解析】
將直線的極坐標(biāo)方程和曲線的參數(shù)方程分別化為直角坐標(biāo)方程,聯(lián)立直角坐標(biāo)方程求出交點(diǎn)坐標(biāo),結(jié)合的取值范圍進(jìn)行取舍即可.【詳解】因?yàn)橹本€的極坐標(biāo)方程為,所以直線的普通方程為,又因?yàn)榍€的參數(shù)方程為(為參數(shù)),所以曲線的直角坐標(biāo)方程為,聯(lián)立方程,解得或,因?yàn)?,所以舍去,故點(diǎn)的直角坐標(biāo)為.【點(diǎn)睛】本題考查極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化;考查運(yùn)算求解能力;熟練掌握極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化公式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.21、(1);(2)【解析】
(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,由可得代入曲線C的方程可得,解得(舍),所以點(diǎn)的極徑為.【點(diǎn)睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,極徑的求法,屬于中檔題.22、(Ⅰ)(Ⅱ)【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科技學(xué)院《無人機(jī)航測(cè)與規(guī)劃制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東江門幼兒師范高等??茖W(xué)?!痘粞莩c欣賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東機(jī)電職業(yè)技術(shù)學(xué)院《合唱指揮二》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工業(yè)大學(xué)《社區(qū)發(fā)展與社會(huì)治理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東第二師范學(xué)院《法語語音》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東白云學(xué)院《影視編導(dǎo)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州職業(yè)技術(shù)學(xué)院《工程安全與環(huán)境保護(hù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 憲法課件培訓(xùn)內(nèi)容
- 贛西科技職業(yè)學(xué)院《經(jīng)濟(jì)效益審計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛東學(xué)院《中外經(jīng)典戲劇與文學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 初中物理期末復(fù)習(xí)+專題5+綜合能力題+課件++人教版物理九年級(jí)全一冊(cè)
- 2024年國(guó)開電大 統(tǒng)計(jì)學(xué)原理 形成性考核冊(cè)答案
- 幼兒園大班語言課件:不怕冷的大衣
- 2024年1月國(guó)開電大法律事務(wù)??啤镀髽I(yè)法務(wù)》期末考試試題及答案
- 2024全國(guó)能源行業(yè)火力發(fā)電集控值班員理論知識(shí)技能競(jìng)賽題庫(kù)(多選題)
- 因式分解(分組分解法)專項(xiàng)練習(xí)100題及答案
- 冶煉煙氣制酸工藝設(shè)計(jì)規(guī)范
- 《上帝擲骰子嗎:量子物理史話》超星爾雅學(xué)習(xí)通章節(jié)測(cè)試答案
- Unit13 同步教學(xué)設(shè)計(jì)2023-2024學(xué)年人教版九年級(jí)英語全冊(cè)
- 2023-2024學(xué)年河北省保定市滿城區(qū)八年級(jí)(上)期末英語試卷
- 2024成都中考數(shù)學(xué)第一輪專題復(fù)習(xí)之專題四 幾何動(dòng)態(tài)探究題 教學(xué)課件
評(píng)論
0/150
提交評(píng)論