版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△A′B′C′是△ABC以點O為位似中心經過位似變換得到的,若△A′B′C′的面積與△ABC的面積比是4:9,則OB′:OB為()A.2:3 B.3:2 C.4:5 D.4:92.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是().A. B. C. D.3.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數為()A.60° B.65° C.70° D.75°4.下列計算正確的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a65.若關于的方程的兩根互為倒數,則的值為()A. B.1 C.-1 D.06.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個7.若實數m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<28.某校九年級共有1、2、3、4四個班,現從這四個班中隨機抽取兩個班進行一場籃球比賽,則恰好抽到1班和2班的概率是()A.18 B.16 C.39.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數y=的圖象恰好經過點A′、B,則k的值是()A.9 B. C. D.310.據統(tǒng)計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數依次是:27,30,29,25,26,28,29,那么這組數據的中位數和眾數分別是()A.25和30 B.25和29 C.28和30 D.28和29二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系xOy中,點A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點P順時針旋轉30°得到線段PC,連接BC.若點A的坐標為(﹣1,0),則線段BC的長為_____.12.函數,當x<0時,y隨x的增大而_____.13.從某玉米種子中抽取6批,在同一條件下進行發(fā)芽試驗,有關數據如下:種子粒數100400800100020005000發(fā)芽種子粒數8531865279316044005發(fā)芽頻率0.8500.7950.8150.7930.8020.801根據以上數據可以估計,該玉米種子發(fā)芽的概率為___________(精確到0.1).14.如圖所示,一只螞蟻從A點出發(fā)到D,E,F處尋覓食物.假定螞蟻在每個岔路口都等可能的隨機選擇一條向左下或右下的路徑(比如A岔路口可以向左下到達B處,也可以向右下到達C處,其中A,B,C都是岔路口).那么,螞蟻從A出發(fā)到達E處的概率是_____.15.如圖,一塊飛鏢游戲板由大小相等的小正方形格子構成,向游戲板隨機投擲一枚飛鏢,擊中黑色區(qū)域的概率是______.16.如圖,將一個長方形紙條折成如圖的形狀,若已知∠2=55°,則∠1=____.三、解答題(共8題,共72分)17.(8分)手機下載一個APP、繳納一定數額的押金,就能以每小時0.5到1元的價格解鎖一輛自行車任意騎行,共享單車為解決市民出行的“最后一公里”難題幫了大忙,人們在享受科技進步、共享經濟帶來的便利的同時,隨意停放、加裝私鎖、推車下河、大卸八塊等毀壞共享單車的行為也層出不窮?某共享單車公司一月投入部分自行車進入市場,一月底發(fā)現損壞率不低于10%,二月初又投入1200輛進入市場,使可使用的自行車達到7500輛.一月份該公司投入市場的自行車至少有多少輛?二月份的損壞率為20%,進入三月份,該公司新投入市場的自行車比二月份增長4a%,由于媒體的關注,毀壞共享單車的行為點燃了國民素質的大討論,三月份的損壞率下降為a%,三月底可使用的自行車達到7752輛,求a的值.18.(8分)一道選擇題有四個選項.(1)若正確答案是,從中任意選出一項,求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項,求選中的恰好是正確答案的概率.19.(8分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.20.(8分)在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).畫出△ABC關于軸對稱的△A1B1C1;以M點為位似中心,在網格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1.21.(8分)十八大報告首次提出建設生態(tài)文明,建設美麗中國.十九大報告再次明確,到2035年美麗中國目標基本實現.森林是人類生存發(fā)展的重要生態(tài)保障,提高森林的數量和質量對生態(tài)文明建設非常關鍵.截止到2013年,我國已經進行了八次森林資源清查,其中全國和北京的森林面積和森林覆蓋率情況如下:表1全國森林面積和森林覆蓋率清查次數一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)122001150125001340015894.0917490.9219545.2220768.73森林覆蓋率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面積和森林覆蓋率清查次數一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)33.7437.8852.0558.81森林覆蓋率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上數據來源于中國林業(yè)網)請根據以上信息解答下列問題:(1)從第次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;(2)補全以下北京森林覆蓋率折線統(tǒng)計圖,并在圖中標明相應數據;(3)第八次清查的全國森林面積20768.73(萬公頃)記為a,全國森林覆蓋率21.63%記為b,到2018年第九次森林資源清查時,如果全國森林覆蓋率達到27.15%,那么全國森林面積可以達到萬公頃(用含a和b的式子表示).22.(10分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.23.(12分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉,得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結果即可).24.已知是關于的方程的一個根,則__
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據位似的性質得△ABC∽△A′B′C′,再根據相似三角形的性質進行求解即可得.【詳解】由位似變換的性質可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'與△ABC的面積的比4:9,∴△A'B'C'與△ABC的相似比為2:3,∴,故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.2、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最小.由線段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.3、C【解析】
由等腰三角形的性質可求∠ACD=70°,由平行線的性質可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質,平行線的性質,是基礎題.4、D【解析】
根據二次根式的運算法則,同類二次根式的判斷,開算術平方根,同底數冪的除法及冪的乘方運算.【詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.
a6÷a2=a4≠a3,故C選項錯誤;D.
(?a2)3=?a6,故D選項正確.故選D.【點睛】本題主要考查了二次根式的運算法則,開算術平方根,同底數冪的除法及冪的乘方運算,熟記法則是解題的關鍵.5、C【解析】
根據已知和根與系數的關系得出k2=1,求出k的值,再根據原方程有兩個實數根,即可求出符合題意的k的值.【詳解】解:設、是的兩根,由題意得:,由根與系數的關系得:,∴k2=1,解得k=1或?1,∵方程有兩個實數根,則,當k=1時,,∴k=1不合題意,故舍去,當k=?1時,,符合題意,∴k=?1,故答案為:?1.【點睛】本題考查的是一元二次方程根與系數的關系及相反數的定義,熟知根與系數的關系是解答此題的關鍵.6、C【解析】
由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質,等腰三角形的性質,全等三角形的性質和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.7、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數y=m2+2與函數y=-,作函數圖象如圖,在第二象限,函數y=m2+2的y值隨m的增大而減小,函數y=-的y值隨m的增大而增大,當m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標大于-2,當m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標小于-1,∴-2<m<-1.故選A.考點:1.二次函數的圖象;2.反比例函數的圖象.8、B【解析】畫樹狀圖展示所有12種等可能的結果數,再找出恰好抽到1班和2班的結果數,然后根據概率公式求解.解:畫樹狀圖為:共有12種等可能的結果數,其中恰好抽到1班和2班的結果數為2,所以恰好抽到1班和2班的概率=212故選B.9、C【解析】
設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據相似三角形或銳角三角函數可求得A′(,),根據反比例函數性質k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.10、D【解析】【分析】根據中位數和眾數的定義進行求解即可得答案.【詳解】對這組數據重新排列順序得,25,26,27,28,29,29,30,處于最中間是數是28,∴這組數據的中位數是28,在這組數據中,29出現的次數最多,∴這組數據的眾數是29,故選D.【點睛】本題考查了中位數和眾數的概念,熟練掌握眾數和中位數的概念是解題的關鍵.一組數據中出現次數最多的數據叫做眾數,一組數據按從小到大(或從大到?。┡判蚝螅挥谧钪虚g的數(或中間兩數的平均數)是這組數據的中位數.二、填空題(本大題共6個小題,每小題3分,共18分)11、22【解析】
只要證明△PBC是等腰直角三角形即可解決問題.【詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【點睛】本題考查翻折變換、坐標與圖形的變化、等腰直角三角形的判定和性質等知識,解題的關鍵是證明△PBC是等腰直角三角形.12、減小【解析】
先根據反比例函數的性質判斷出函數的圖象所在的象限,再根據反比例函數的性質進行解答即可.【詳解】解:∵反比例函數中,∴此函數的圖象在一、三象限,在每一象限內y隨x的增大而減小.故答案為減小.【點睛】考查反比例函數的圖象與性質,反比例函數當時,圖象在第一、三象限.在每個象限,y隨著x的增大而減小,當時,圖象在第二、四象限.在每個象限,y隨著x的增大而增大.13、1.2【解析】
仔細觀察表格,發(fā)現大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,從而得到結論.【詳解】∵觀察表格,發(fā)現大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,∴該玉米種子發(fā)芽的概率為1.2,故答案為1.2.【點睛】考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數與總情況數之比.14、【解析】試題分析:如圖所示,一只螞蟻從點出發(fā)后有ABD、ABE、ACE、ACF四條路,所以螞蟻從出發(fā)到達處的概率是.考點:概率.15、【解析】
求出黑色區(qū)域面積與正方形總面積之比即可得答案.【詳解】圖中有9個小正方形,其中黑色區(qū)域一共有3個小正方形,所以隨意投擲一個飛鏢,擊中黑色區(qū)域的概率是,故答案為.【點睛】本題考查了幾何概率,熟練掌握概率的計算公式是解題的關鍵.注意面積之比幾何概率.16、1【解析】
由折疊可得∠3=180°﹣2∠2,進而可得∠3的度數,然后再根據兩直線平行,同旁內角互補可得∠1+∠3=180°,進而可得∠1的度數.【詳解】解:由折疊可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案為1.三、解答題(共8題,共72分)17、(1)7000輛;(2)a的值是1.【解析】
(1)設一月份該公司投入市場的自行車x輛,根據損壞率不低于10%,可得不等量關系:一月初投入的自行車-一月底可用的自行車≥一月損壞的自行車列不等式求解;(2)根據三月底可使用的自行車達到7752輛,可得等量關系為:(二月份剩余的可用自行車+三月初投入的自行車)×三月份的損耗率=7752輛列方程求解.【詳解】解:(1)設一月份該公司投入市場的自行車x輛,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份該公司投入市場的自行車至少有7000輛;(2)由題意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣a%)=7752,化簡,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵,解得a<80,∴a=1,答:a的值是1.【點睛】本題考查了一元一次不等式和一元二次方程的實際應用,根據一月底的損壞率不低于10%找出不等量關系式解答(1)的關鍵;根據三月底可使用的自行車達到7752輛找出等量關系是解答(2)的關鍵.18、(1);(2)【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有12種等可能的結果數,再找出選中的恰好是正確答案A,B的結果數,然后根據概率公式求解.【詳解】解:(1)選中的恰好是正確答案A的概率為;
(2)畫樹狀圖:
共有12種等可能的結果數,其中選中的恰好是正確答案A,B的結果數為2,
所以選中的恰好是正確答案A,B的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.19、(1)(2)【解析】
(1)根據負整數指數冪、二次根式、零指數冪和特殊角的三角函數值可以解答本題;(2)根據分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.【詳解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,當x=﹣1時,原式==.【點睛】本題考查分式的化簡求值、絕對值、零指數冪、負整數指數冪和特殊角的三角函數值,解答本題的關鍵是明確它們各自的計算方法.20、(1)詳見解析;(2)詳見解析.【解析】
試題分析:(1)直接利用關于x軸對稱點的性質得出對應點位置,進而得出答案;(2)直接利用位似圖形的性質得出對應點位置,進而得出答案;試題解析:(1)如圖所示:△A1B1C1,即為所求;(2)如圖所示:△A2B2C2,即為所求;考點:作圖-位似變換;作圖-軸對稱變換21、(1)四;(2)見解析;(3).【解析】
(1)比較兩個折線統(tǒng)計圖,找出滿足題意的調查次數即可;(2)描出第四次與第五次北京森林覆蓋率,補全折線統(tǒng)計圖即可;(3)根據第八次全面森林面積除以森林覆蓋率求出全國總面積,除以第九次的森林覆蓋率,即可得到結果.【詳解】解:(1)觀察兩折線統(tǒng)計圖比較得:從第四次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;故答案為四;(2)補全折線統(tǒng)計圖,如圖所示:(3)根據題意得:×27.15%=,則全國森林面積可以達到萬公頃,故答案為.【點睛】此題考查了折線統(tǒng)計圖,弄清題中的數據是解本題的關鍵.22、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】
(1)將的坐標代入拋物線中,求出待定系數的值,即可得出拋物線的解析式;
(2)根據的坐標,易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當面積有最大值時,四邊形的面積最大值;(3)本題應分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標相同,代入拋物線的解析式中即可求出點坐標;②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據平行四邊形的性質,得出點縱坐標(縱坐標的絕對值相等),代入拋物線的解析式中即可求得點坐標.【詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設當時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,
∵C(0,-3)
∴設P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當BC=PE時,四邊形BCEP為平行四邊形,
∵C(0,-3)
∴設P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此時存在點P2(,3)和P3(,3),
綜上所述存在3個點符合題意,坐標分別是P1(3,-3),P2(,3),P3(,3).【點睛】此題考查了二次函數解析式的確定、圖形面積的求法、平行四邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國孕婦裝市場競爭狀況及投資趨勢分析報告
- 2024-2030年中國多腔高速半自動吹瓶機資金申請報告
- 2024-2030年中國啤酒行業(yè)發(fā)展規(guī)模及前景趨勢分析報告
- 2024-2030年中國廂式貨車行業(yè)市場發(fā)展格局及未來投資潛力分析報告
- 2024-2030年中國卸妝產品市場營銷模式及發(fā)展競爭力分析報告版
- 2024年版摩托車銷售合同3篇
- 2024年度環(huán)保型砂石生產設備采購合同協議2篇
- 2021-2022學年河南省澠池高級中學高一月考數學試卷
- 2025年哈爾濱貨運從業(yè)資格證模擬考試0題b2b
- 2025年鶴壁道路貨運從業(yè)資格證考試
- 海洋平臺深水管道高效保溫技術
- 《新疆大學版學術期刊目錄》(人文社科)
- 充電樁維保投標方案
- 《如何寫文獻綜述》課件
- 肛瘺LIFT術式介紹
- 通過《古文觀止》選讀了解古代文學的社會功能與價值
- 語言本能:人類語言進化的奧秘
- 職業(yè)生涯規(guī)劃(圖文)課件
- 2024版國開電大??啤禘XCEL在財務中的應用》在線形考(形考作業(yè)一至四)試題及答案
- 能源管理系統(tǒng)平臺軟件數據庫設計說明書
- 中外園林史第七章-中國近現代園林發(fā)展
評論
0/150
提交評論