版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.12.已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為()A. B. C. D.3.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓與拋物線的兩個(gè)交點(diǎn)連線正好過(guò)點(diǎn),則橢圓的離心率為()A. B. C. D.4.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.25.某公園新購(gòu)進(jìn)盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.6.設(shè)i為數(shù)單位,為z的共軛復(fù)數(shù),若,則()A. B. C. D.7.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.在中,在邊上滿足,為的中點(diǎn),則().A. B. C. D.9.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或910.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.11.已知點(diǎn)P不在直線l、m上,則“過(guò)點(diǎn)P可以作無(wú)數(shù)個(gè)平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽(yáng)線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽(yáng)線,四根陰線的概率為_(kāi)______.14.直線(,)過(guò)圓:的圓心,則的最小值是______.15.已知數(shù)列滿足對(duì)任意,若,則數(shù)列的通項(xiàng)公式________.16.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡(jiǎn)求值:.18.(12分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請(qǐng)分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長(zhǎng).19.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說(shuō)明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的解集包含,求的取值范圍.21.(12分)如圖,平面分別是上的動(dòng)點(diǎn),且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時(shí),求平面與平面所成的二面角的余弦值.22.(10分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個(gè)極值點(diǎn)為,,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹(shù),從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.2.A【解析】
若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,∴,當(dāng)時(shí),,當(dāng),,函數(shù)恒過(guò)點(diǎn),分別畫出與的圖象,如圖所示,,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,∴且,即,且∴,故實(shí)數(shù)m的最大值為,故選:A【點(diǎn)睛】本題考查考查了不等式恒有一正整數(shù)解問(wèn)題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.3.B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題4.D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.5.B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開(kāi)有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個(gè)位置中有種,根據(jù)分步乘法計(jì)數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個(gè)位置中有,根據(jù)分步計(jì)數(shù)原理有,所以共有種.故選:B.【點(diǎn)睛】本題考查排列應(yīng)用問(wèn)題、分步乘法計(jì)數(shù)原理,不相鄰問(wèn)題插空法是解題的關(guān)鍵,屬于中檔題.6.A【解析】
由復(fù)數(shù)的除法求出,然后計(jì)算.【詳解】,∴.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘除法運(yùn)算,考查共軛復(fù)數(shù)的概念,掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.7.A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.8.B【解析】
由,可得,,再將代入即可.【詳解】因?yàn)?,所以,?故選:B.【點(diǎn)睛】本題考查平面向量的線性運(yùn)算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.9.C【解析】
由題意利用兩個(gè)向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.10.C【解析】
由,可得,化簡(jiǎn)利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.11.C【解析】
根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】點(diǎn)不在直線、上,若直線、互相平行,則過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行,即必要性成立,若過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過(guò)點(diǎn)只能作一個(gè)平面同時(shí)和兩條直線平行,則與條件矛盾,即充分性成立則“過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.12.D【解析】
設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線與拋物線的綜合應(yīng)用,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
觀察八卦中陰線和陽(yáng)線的情況為3線全為陽(yáng)線或全為陰線各一個(gè),還有6個(gè)是1陰2陽(yáng)和1陽(yáng)2陰各3個(gè)。抽取的兩卦中共2陽(yáng)4陰的所有可能情況是一卦全陰、另一卦2陽(yáng)1陰,或兩卦全是1陽(yáng)2陰?!驹斀狻堪素灾嘘幘€和陽(yáng)線的情況為3線全為陽(yáng)線的一個(gè),全為陰線的一個(gè),1陰2陽(yáng)的3個(gè),1陽(yáng)2陰的3個(gè)。抽取的兩卦中共2陽(yáng)4陰的所有可能情況是一卦全陰、另一卦2陽(yáng)1陰,或兩卦全是1陽(yáng)2陰。∴從8個(gè)卦中任取2卦,共有種可能,兩卦中共2陽(yáng)4陰的情況有,所求概率為。故答案為:。【點(diǎn)睛】本題考查古典概型,解題關(guān)鍵是確定基本事件的個(gè)數(shù)。本題不能受八卦影響,我們關(guān)心的是八卦中陰線和陽(yáng)線的條數(shù),這樣才能正確地確定基本事件的個(gè)數(shù)。14.;【解析】
求出圓心坐標(biāo),代入直線方程得的關(guān)系,再由基本不等式求得題中最小值.【詳解】圓:的標(biāo)準(zhǔn)方程為,圓心為,由題意,即,∴,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故答案為:.【點(diǎn)睛】本題考查用基本不等式求最值,考查圓的標(biāo)準(zhǔn)方程,解題方法是配方法求圓心坐標(biāo),“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.15.【解析】
由可得,利用等比數(shù)列的通項(xiàng)公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結(jié)論.【詳解】由,得,數(shù)列是等比數(shù)列,首項(xiàng)為2,公比為2,,,,,滿足上式,.故答案為:.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式,遞推公式轉(zhuǎn)化為等比數(shù)列是解題的關(guān)鍵,利用累加法求通項(xiàng)公式,屬于中檔題.16.【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】
(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點(diǎn)的橫坐標(biāo)0、1,然后求在區(qū)間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計(jì)算出,然后再整體代入可得;【詳解】解:(1)聯(lián)立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點(diǎn)睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應(yīng)用,屬于中檔題.18.(1).x2+y2=1.(2)16【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程公式化簡(jiǎn)得到答案.(2)圓心到直線的距離為,故弦長(zhǎng)為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長(zhǎng)為.【點(diǎn)睛】本題考查了極坐標(biāo)方程和參數(shù)方程,圓的弦長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.19.(1),表示圓心為,半徑為的圓;(2)【解析】
(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.(2)直線方程為,計(jì)算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡(jiǎn)得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,直線和圓的距離的最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20.(1);(2).【解析】
(1)對(duì)范圍分類整理得:,分類解不等式即可.(2)利用已知轉(zhuǎn)化為“當(dāng)時(shí),”恒成立,利用絕對(duì)值不等式的性質(zhì)可得:,問(wèn)題得解.【詳解】當(dāng)時(shí),,當(dāng)時(shí),由得,解得;當(dāng)時(shí),無(wú)解;當(dāng)時(shí),由得,解得,所以的解集為(2)的解集包含等價(jià)于在上恒成立,當(dāng)時(shí),等價(jià)于恒成立,而,∴,故滿足條件的的取值范圍是【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,還考查了轉(zhuǎn)化能力及絕對(duì)值不等式的性質(zhì),考查計(jì)算能力,屬于中檔題.21.(1)見(jiàn)解析;(2)【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;(2)以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因?yàn)槠矫妫?,又,所以平面,所以,又,所?若平面平面,則平面,所以,由且,又,所以.以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,則,,設(shè)則由,可得,,即,所以可得,所以,設(shè)平面的一個(gè)法向量為,則,,,取,得所以易知平面的法向量為,設(shè)平面與平面所成的二面角為,則,結(jié)合圖形可知平面與平面所成的二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的判定定理及性質(zhì)定理的應(yīng)用,利用空間向量法求二面角,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),屬于中檔題.22.(1)(2)【解析】分析:(1)先求導(dǎo),再令在上恒成
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作總結(jié)之大專生畢業(yè)總結(jié)報(bào)告
- 2024年加油站項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 2024年體外及體內(nèi)反搏裝置項(xiàng)目資金申請(qǐng)報(bào)告
- 銀行合規(guī)審查制度
- 《支配權(quán)與請(qǐng)求權(quán)》課件
- 《保險(xiǎn)經(jīng)紀(jì)人概況》課件
- 美術(shù)老師工作總結(jié)
- 特別評(píng)論:如何看待退平臺(tái)后企業(yè)與政府的關(guān)系,202412 -中誠(chéng)信
- 山西省臨汾市洪洞縣八校聯(lián)考2023-2024學(xué)年七年級(jí)上學(xué)期期末測(cè)試數(shù)學(xué)試卷(含解析)
- 八年級(jí)物理功率課件
- Unit2Section A 1a-2b課件2024-2025學(xué)年人教版英語(yǔ)九年級(jí)全冊(cè)
- 《經(jīng)濟(jì)思想史》全套教學(xué)課件
- 2.2大氣受熱過(guò)程-以新疆番茄為例課件高中地理人教版(2019)必修一
- office操作技巧手冊(cè)系列-excel
- 2023-2024學(xué)年全國(guó)小學(xué)二年級(jí)下語(yǔ)文人教版期末考試試卷(含答案解析)
- 新質(zhì)生產(chǎn)力賦能高質(zhì)量發(fā)展的邏輯理路、關(guān)鍵著力點(diǎn)與實(shí)踐路徑
- 微積分試卷及規(guī)范標(biāo)準(zhǔn)答案6套
- 國(guó)家開(kāi)放大學(xué)電大??啤锻恋乩靡?guī)劃》2023-2024期末試題及答案試卷代 1308
- 獨(dú)家采購(gòu)協(xié)議合同書
- 2024年安徽省中考數(shù)學(xué)試卷(含答案)
- 晶種法制備多元金屬納米晶體及燃料電池中的構(gòu)效關(guān)系研究
評(píng)論
0/150
提交評(píng)論