第1章電力電子器件概述_第1頁(yè)
第1章電力電子器件概述_第2頁(yè)
第1章電力電子器件概述_第3頁(yè)
第1章電力電子器件概述_第4頁(yè)
第1章電力電子器件概述_第5頁(yè)
已閱讀5頁(yè),還剩60頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

半控型器件(Thyristor)

——通過控制信號(hào)可以控制其導(dǎo)通而不能控制其關(guān)斷。全控型器件(IGBT,MOSFET)——通過控制信號(hào)既可控制其導(dǎo)通又可控制其關(guān)斷,又稱自關(guān)斷器件。不可控器件(PowerDiode)——不能用控制信號(hào)來控制其通斷,因此也就不需要驅(qū)動(dòng)電路。1.1.3電力電子器件的分類按照器件能夠被控制的程度,分為以下三類:1電流驅(qū)動(dòng)型

——通過從控制端注入或者抽出電流來實(shí)現(xiàn)導(dǎo)通或者關(guān)斷的控制。電壓驅(qū)動(dòng)型

——僅通過在控制端和公共端之間施加一定的電壓信號(hào)就可實(shí)現(xiàn)導(dǎo)通或者關(guān)斷的控制。1.1.3電力電子器件的分類

按照驅(qū)動(dòng)電路信號(hào)的性質(zhì),分為兩類:21.3.4晶閘管的派生器件有快速晶閘管和高頻晶閘管。開關(guān)時(shí)間以及du/dt和di/dt耐量都有明顯改善。普通晶閘管關(guān)斷時(shí)間數(shù)百微秒,快速晶閘管數(shù)十微秒,高頻晶閘管10s左右。高頻晶閘管的不足在于其電壓和電流定額都不易做高。由于工作頻率較高,不能忽略其開關(guān)損耗的發(fā)熱效應(yīng)。1)快速晶閘管(FastSwitchingThyristor——FST)31.3.4晶閘管的派生器件2)雙向晶閘管(TriodeACSwitch——TRIAC或Bidirectionaltriodethyristor)圖1-10雙向晶閘管的電氣圖形符號(hào)和伏安特性a)電氣圖形符號(hào)b)伏安特性a)b)IOUIG=0GT1T2可認(rèn)為是一對(duì)反并聯(lián)聯(lián)接的普通晶閘管的集成。有兩個(gè)主電極T1和T2,一個(gè)門極G。在第I和第III象限有對(duì)稱的伏安特性。不用平均值而用有效值來表示其額定電流值。DATASHEET41.3.4晶閘管的派生器件逆導(dǎo)晶閘管(ReverseConductingThyristor——RCT)a)KGAb)UOIIG=0圖1-11逆導(dǎo)晶閘管的電氣圖形符號(hào)和伏安特性a)電氣圖形符號(hào)b)伏安特性將晶閘管反并聯(lián)一個(gè)二極管制作在同一管芯上的功率集成器件。具有正向壓降小、關(guān)斷時(shí)間短、高溫特性好、額定結(jié)溫高等優(yōu)點(diǎn)。51.3.4晶閘管的派生器件光控晶閘管(LightTriggeredThyristor——LTT)AGKa)AK光強(qiáng)度強(qiáng)弱b)OUIA圖1-12光控晶閘管的電氣圖形符號(hào)和伏安特性a)電氣圖形符號(hào)b)伏安特性又稱光觸發(fā)晶閘管,是利用一定波長(zhǎng)的光照信號(hào)觸發(fā)導(dǎo)通的晶閘管。光觸發(fā)保證了主電路與控制電路之間的絕緣,且可避免電磁干擾的影響。因此目前在高壓大功率的場(chǎng)合。61.4典型全控型器件1.4.1門極可關(guān)斷晶閘管1.4.2電力晶體管1.4.3電力場(chǎng)效應(yīng)晶體管1.4.4絕緣柵雙極晶體管71.4典型全控型器件·引言門極可關(guān)斷晶閘管——在晶閘管問世后不久出現(xiàn)。20世紀(jì)80年代以來,電力電子技術(shù)進(jìn)入了一個(gè)嶄新時(shí)代。典型代表——門極可關(guān)斷晶閘管GTO、電力晶體管GTR、電力場(chǎng)效應(yīng)晶體管P-MOSFET、絕緣柵雙極晶體管IGBT。81.4典型全控型器件·引言常用的典型全控型器件電力MOSFETIGBT單管及模塊91.4.1

門極可關(guān)斷晶閘管晶閘管的一種派生器件??梢酝ㄟ^在門極施加負(fù)的脈沖電流使其關(guān)斷。GTO的電壓、電流容量較大,與普通晶閘管接近,因而在兆瓦級(jí)以上的大功率場(chǎng)合仍有較多的應(yīng)用。門極可關(guān)斷晶閘管(Gate-Turn-OffThyristor—GTO)101.4.1

門極可關(guān)斷晶閘管結(jié)構(gòu):與普通晶閘管的相同點(diǎn):

PNPN四層半導(dǎo)體結(jié)構(gòu),外部引出三端“陽(yáng)極A、陰極K和門極G”。和普通晶閘管的不同點(diǎn):GTO是一種多元的功率集成器件。圖1-13GTO的內(nèi)部結(jié)構(gòu)和電氣圖形符號(hào)a)各單元的陰極、門極間隔排列的圖形b)并聯(lián)單元結(jié)構(gòu)斷面示意圖1)GTO的結(jié)構(gòu)和工作原理111.4.1

門極可關(guān)斷晶閘管工作原理:與普通晶閘管一樣,可以用圖1-7所示的雙晶體管模型來分析。

圖1-7晶閘管的雙晶體管模型及其工作原理1+2=1是器件臨界導(dǎo)通的條件。由P1N1P2和N1P2N2構(gòu)成的兩個(gè)晶體管V1、V2分別具有共基極電流增益1和2

。121.4.1

門極可關(guān)斷晶閘管GTO能夠通過門極關(guān)斷的原因是其與普通晶閘管有如下區(qū)別:設(shè)計(jì)2較大,使晶體管V2控制靈敏,易于GTO。導(dǎo)通時(shí)1+2更接近1,導(dǎo)通時(shí)接近臨界飽和,有利門極控制關(guān)斷,但導(dǎo)通時(shí)管壓降增大。

多元集成結(jié)構(gòu),使得P2基區(qū)橫向電阻很小,能從門極抽出較大電流。

圖1-7晶閘管的工作原理131.4.1

門極可關(guān)斷晶閘管GTO導(dǎo)通過程與普通晶閘管一樣,只是導(dǎo)通時(shí)飽和程度較淺。GTO關(guān)斷過程中有強(qiáng)烈正反饋使器件退出飽和而關(guān)斷。多元集成結(jié)構(gòu)還使GTO比普通晶閘管開通過程快,承受di/dt能力強(qiáng)。由上述分析我們可以得到以下結(jié)論:141.4.1

門極可關(guān)斷晶閘管(3)最大可關(guān)斷陽(yáng)極電流IATO(4)

電流關(guān)斷增益off

off一般很小,只有5左右,這是GTO的一個(gè)主要缺點(diǎn)。1000A的GTO關(guān)斷時(shí)門極負(fù)脈沖電流峰值要200A。

——GTO額定電流?!畲罂申P(guān)斷陽(yáng)極電流與門極負(fù)脈沖電流最大值IGM之比(1-8)151.4.2電力晶體管電力晶體管(GiantTransistor——GTR,直譯為巨型晶體管)。耐高電壓、大電流的雙極結(jié)型晶體管(BipolarJunctionTransistor——BJT),英文有時(shí)候也稱為PowerBJT。

應(yīng)用:20世紀(jì)80年代以來,在中、小功率范圍內(nèi)取代晶閘管,但目前又大多被IGBT和電力MOSFET取代。術(shù)語(yǔ)用法:16與普通的雙極結(jié)型晶體管基本原理是一樣的。主要特性是耐壓高、電流大、開關(guān)特性好。通常采用至少由兩個(gè)晶體管按達(dá)林頓接法組成的單元結(jié)構(gòu)。采用集成電路工藝將許多這種單元并聯(lián)而成。1.4.2電力晶體管1)GTR的結(jié)構(gòu)和工作原理圖1-15GTR的結(jié)構(gòu)、電氣圖形符號(hào)和內(nèi)部載流子的流動(dòng)

a)內(nèi)部結(jié)構(gòu)斷面示意圖b)電氣圖形符號(hào)c)內(nèi)部載流子的流動(dòng)171.4.2電力晶體管在應(yīng)用中,GTR一般采用共發(fā)射極接法。集電極電流ic與基極電流ib之比為(1-9)

——GTR的電流放大系數(shù),反映了基極電流對(duì)集電極電流的控制能力。單管GTR的

值比小功率的晶體管小得多,通常為10左右,采用達(dá)林頓接法可有效增大電流增益??昭麟娮恿鱟)EbEcibic=bibie=(1+b)ib1)GTR的結(jié)構(gòu)和工作原理181.4.2電力晶體管

(1)

靜態(tài)特性共發(fā)射極接法時(shí)的典型輸出特性:截止區(qū)、放大區(qū)和飽和區(qū)。在電力電子電路中GTR工作在開關(guān)狀態(tài)。截止區(qū)、飽和區(qū)在開關(guān)過程中,即在截止區(qū)和飽和區(qū)之間過渡時(shí),要經(jīng)過放大區(qū)。但是,工作在開關(guān)狀態(tài)!截止區(qū)放大區(qū)飽和區(qū)OIcib3ib2ib1ib1<ib2<ib3Uce圖1-16共發(fā)射極接法時(shí)GTR的輸出特性2)GTR的基本特性191.4.2電力晶體管一次擊穿:集電極電壓升高至擊穿電壓時(shí),Ic迅速增大。只要Ic不超過限度,GTR一般不會(huì)損壞,工作特性也不變。

二次擊穿:一次擊穿發(fā)生時(shí),Ic突然急劇上升,電壓陡然下降。常常立即導(dǎo)致器件的永久(熱)損壞,或者工作特性明顯衰變。安全工作區(qū)——SOA最高電壓UceM、集電極最大電流IcM、最大耗散功率PcM、二次擊穿臨界線限定。SOAOIcIcMPSBPcMUceUceM圖1-18GTR的安全工作區(qū)GTR的二次擊穿現(xiàn)象與安全工作區(qū)201.4.3電力場(chǎng)效應(yīng)晶體管分為結(jié)型和絕緣柵型通常主要指絕緣柵型中的MOS型(MetalOxideSemiconductorFET)。簡(jiǎn)稱電力MOSFET(PowerMOSFET)

特點(diǎn)——用柵極電壓來控制漏極電流驅(qū)動(dòng)電路簡(jiǎn)單,需要的驅(qū)動(dòng)功率小。開關(guān)速度快,工作頻率高。熱穩(wěn)定性優(yōu)于GTR。電流容量小,耐壓低,一般只適用于功率不超過10kW的電力電子裝置。電力場(chǎng)效應(yīng)晶體管211.4.3電力場(chǎng)效應(yīng)晶體管電力MOSFET的種類

按導(dǎo)電溝道可分為P溝道和N溝道。

耗盡型——當(dāng)柵極電壓為零時(shí)漏源極之間就存在導(dǎo)電溝道。

增強(qiáng)型——對(duì)于N(P)溝道器件,柵極電壓大于(小于)零時(shí)才存在導(dǎo)電溝道。

電力MOSFET主要是N溝道增強(qiáng)型。1)電力MOSFET的結(jié)構(gòu)和工作原理221.4.3電力場(chǎng)效應(yīng)晶體管電力MOSFET的結(jié)構(gòu)是單極型晶體管。導(dǎo)電機(jī)理與小功率MOS管相同,但結(jié)構(gòu)上有較大區(qū)別。采用多元集成結(jié)構(gòu),不同的生產(chǎn)廠家采用了不同設(shè)計(jì)。圖1-19電力MOSFET的結(jié)構(gòu)和電氣圖形符號(hào)231.4.3電力場(chǎng)效應(yīng)晶體管小功率MOS管是橫向?qū)щ娖骷?。電力MOSFET大都采用垂直導(dǎo)電結(jié)構(gòu),又稱為VMOSFET。電力MOSFET的結(jié)構(gòu)241.4.3電力場(chǎng)效應(yīng)晶體管截止:漏源極間加正電源,柵源極間電壓為零。P基區(qū)與N漂移區(qū)之間形成的PN結(jié)J1反偏,漏源極之間無電流流過。導(dǎo)電:在柵源極間加正電壓UGS當(dāng)UGS大于UT時(shí),P型半導(dǎo)體反型成N型而成為反型層,該反型層形成N溝道而使PN結(jié)J1消失,漏極和源極導(dǎo)電。圖1-19電力MOSFET的結(jié)構(gòu)和電氣圖形符號(hào)電力MOSFET的工作原理251.4.3電力場(chǎng)效應(yīng)晶體管

(1)靜態(tài)特性漏極電流ID和柵源間電壓UGS的關(guān)系稱為MOSFET的轉(zhuǎn)移特性。ID較大時(shí),ID與UGS的關(guān)系近似線性,曲線的斜率定義為跨導(dǎo)Gfs。010203050402468a)10203050400b)1020305040飽和區(qū)非飽和區(qū)截止區(qū)ID/AUTUGS/VUDS/VUGS=UT=3VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A圖1-20電力MOSFET的轉(zhuǎn)移特性和輸出特性

a)轉(zhuǎn)移特性b)輸出特性2)電力MOSFET的基本特性261.4.3電力場(chǎng)效應(yīng)晶體管截止區(qū)(對(duì)應(yīng)于GTR的截止區(qū))飽和區(qū)(對(duì)應(yīng)于GTR的放大區(qū))非飽和區(qū)(對(duì)應(yīng)GTR的飽和區(qū))工作在開關(guān)狀態(tài),即在截止區(qū)和非飽和區(qū)之間來回轉(zhuǎn)換。圖1-20電力MOSFET的轉(zhuǎn)移特性和輸出特性

a)轉(zhuǎn)移特性b)輸出特性MOSFET的漏極伏安特性:010203050402468a)10203050400b)1020305040飽和區(qū)非飽和區(qū)截止區(qū)ID/AUTUGS/VUDS/VUGS=UT=3VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A271.4.3電力場(chǎng)效應(yīng)晶體管開關(guān)時(shí)間在10~100ns之間,工作頻率可達(dá)100kHz以上,是主要電力電子器件中最高的?。ㄆ骷萘孔钚。﹫?chǎng)控器件,靜態(tài)時(shí)幾乎不需輸入電流。但在開關(guān)過程中僅需對(duì)輸入電容充放電,仍需一定的驅(qū)動(dòng)功率。開關(guān)頻率越高,所需要的驅(qū)動(dòng)功率越大。MOSFET的開關(guān)速度281.4.4絕緣柵雙極晶體管兩類器件取長(zhǎng)補(bǔ)短結(jié)合而成的復(fù)合器件絕緣柵雙極晶體管——IGBTGTR和MOSFET復(fù)合,結(jié)合二者的優(yōu)點(diǎn)。1986年投入市場(chǎng),是中小功率電力電子設(shè)備的主導(dǎo)器件。繼續(xù)提高電壓和電流容量,以期再取代GTO的地位。GTR和GTO的特點(diǎn)——雙極型,電流驅(qū)動(dòng),有電導(dǎo)調(diào)制效應(yīng),通流能力很強(qiáng),開關(guān)速度較低,所需驅(qū)動(dòng)功率大,驅(qū)動(dòng)電路復(fù)雜。MOSFET的優(yōu)點(diǎn)——單極型,電壓驅(qū)動(dòng),開關(guān)速度快,輸入阻抗高,熱穩(wěn)定性好,所需驅(qū)動(dòng)功率小而且驅(qū)動(dòng)電路簡(jiǎn)單。291.4.4絕緣柵雙極晶體管1)IGBT的結(jié)構(gòu)和工作原理三端器件:柵極G、集電極C和發(fā)射極E圖1-22IGBT的結(jié)構(gòu)、簡(jiǎn)化等效電路和電氣圖形符號(hào)a)內(nèi)部結(jié)構(gòu)斷面示意圖b)簡(jiǎn)化等效電路c)電氣圖形符號(hào)301.4.4絕緣柵雙極晶體管

驅(qū)動(dòng)原理與電力MOSFET基本相同,場(chǎng)控器件,通斷由柵射極電壓uGE決定。導(dǎo)通:uGE大于開啟電壓UGE(th)時(shí),MOSFET內(nèi)形成溝道,為晶體管提供基極電流,IGBT導(dǎo)通。通態(tài)壓降:電導(dǎo)調(diào)制效應(yīng)使電阻RN減小,使通態(tài)壓降減小。關(guān)斷:柵射極間施加反壓或不加信號(hào)時(shí),MOSFET內(nèi)的溝道消失,晶體管的基極電流被切斷,IGBT關(guān)斷。

IGBT的原理31a)b)O有源區(qū)正向阻斷區(qū)飽和區(qū)反向阻斷區(qū)ICUGE(th)UGEOICURMUFMUCEUGE(th)UGE增加1.4.4絕緣柵雙極晶體管2)IGBT的基本特性(1)

IGBT的靜態(tài)特性圖1-23IGBT的轉(zhuǎn)移特性和輸出特性a)轉(zhuǎn)移特性b)輸出特性轉(zhuǎn)移特性——IC與UGE間的關(guān)系(開啟電壓UGE(th))輸出特性分為三個(gè)區(qū)域:正向阻斷區(qū)、有源區(qū)和飽和區(qū)。321.4.4絕緣柵雙極晶體管IGBT的特性和參數(shù)特點(diǎn)可以總結(jié)如下:開關(guān)速度高,開關(guān)損耗小。相同電壓和電流定額時(shí),安全工作區(qū)比GTR大,且具有耐脈沖電流沖擊能力。通態(tài)壓降比VDMOSFET低。(GTR特點(diǎn))輸入阻抗高,輸入特性與MOSFET類似。(MOSFET特點(diǎn))與MOSFET和GTR相比,耐壓和通流能力還可以進(jìn)一步提高,同時(shí)保持開關(guān)頻率高的特點(diǎn)。331.4.4絕緣柵雙極晶體管擎住效應(yīng)或自鎖效應(yīng):

IGBT往往與反并聯(lián)的快速二極管封裝在一起,制成模塊,成為逆導(dǎo)器件?!畲蠹姌O電流、最大集射極間電壓和最大允許電壓上升率duCE/dt確定。反向偏置安全工作區(qū)(RBSOA)——最大集電極電流、最大集射極間電壓和最大集電極功耗確定。正偏安全工作區(qū)(FBSOA)動(dòng)態(tài)擎住效應(yīng)比靜態(tài)擎住效應(yīng)所允許的集電極電流小。擎住效應(yīng)曾限制IGBT電流容量提高,20世紀(jì)90年代中后期開始逐漸解決?!狽PN晶體管基極與發(fā)射極之間存在體區(qū)短路電阻,P形體區(qū)的橫向空穴電流會(huì)在該電阻上產(chǎn)生壓降,相當(dāng)于對(duì)J3結(jié)施加正偏壓,一旦J3開通,柵極就會(huì)失去對(duì)集電極電流的控制作用,電流失控。341.5其他新型電力電子器件1.5.1MOS控制晶閘管MCT1.5.2靜電感應(yīng)晶體管SIT1.5.3靜電感應(yīng)晶閘管SITH1.5.4集成門極換流晶閘管IGCT1.5.5功率模塊與功率集成電路351.5.1

MOS控制晶閘管MCTMCT結(jié)合了二者的優(yōu)點(diǎn):承受極高di/dt和du/dt,快速的開關(guān)過程,開關(guān)損耗小。高電壓,大電流、高載流密度,低導(dǎo)通壓降。一個(gè)MCT器件由數(shù)以萬計(jì)的MCT元組成。每個(gè)元的組成為:一個(gè)PNPN晶閘管,一個(gè)控制該晶閘管開通的MOSFET,和一個(gè)控制該晶閘管關(guān)斷的MOSFET。其關(guān)鍵技術(shù)問題沒有大的突破,電壓和電流容量都遠(yuǎn)未達(dá)到預(yù)期的數(shù)值,未能投入實(shí)際應(yīng)用。MCT——MOSFET與晶閘管的復(fù)合361.5.2靜電感應(yīng)晶體管SIT工作頻率與電力MOSFET相當(dāng),甚至更高,功率容量更大,因而適用于高頻大功率場(chǎng)合。在雷達(dá)通信設(shè)備、超聲波功率放大、脈沖功率放大和高頻感應(yīng)加熱等領(lǐng)域獲得應(yīng)用。缺點(diǎn):柵極不加信號(hào)時(shí)導(dǎo)通,加負(fù)偏壓時(shí)關(guān)斷,稱為正常導(dǎo)通型器件,使用不太方便。通態(tài)電阻較大,通態(tài)損耗也大,因而還未在大多數(shù)電力電子設(shè)備中得到廣泛應(yīng)用。SIT——結(jié)型場(chǎng)效應(yīng)晶體管371.5.3靜電感應(yīng)晶閘管SITHSITH通態(tài)壓降低、通流能力強(qiáng)。其很多特性與GTO類似,但開關(guān)速度比GTO高得多,是大容量的快速器件。

SITH一般也是正常導(dǎo)通型,但也有正常關(guān)斷型。此外,電流關(guān)斷增益較小,因而其應(yīng)用范圍還有待拓展。SITH——場(chǎng)控晶閘管381.5.4集成門極換流晶閘管IGCT20世紀(jì)90年代后期出現(xiàn),結(jié)合了IGBT與GTO的優(yōu)點(diǎn),容量與GTO相當(dāng),開關(guān)速度快10倍??墒∪TO復(fù)雜的緩沖電路,但驅(qū)動(dòng)功率仍很大。目前正在與IGBT等新型器件激烈競(jìng)爭(zhēng),試圖最終取代GTO在大功率場(chǎng)合的位置。391.5.5

功率模塊與功率集成電路20世紀(jì)80年代中后期開始,模塊化趨勢(shì),將多個(gè)器件封裝在一個(gè)模塊中,稱為功率模塊??煽s小裝置體積,降低成本,提高可靠性。對(duì)工作頻率高的電路,可大大減小線路電感,從而簡(jiǎn)化對(duì)保護(hù)和緩沖電路的要求。將器件與邏輯、控制、保護(hù)、傳感、檢測(cè)、自診斷等信息電子電路制作在同一芯片上,稱為功率集成電路(PowerIntegratedCircuit——PIC)。基本概念401.5.5

功率模塊與功率集成電路高壓集成電路——HVIC。智能功率集成電路——SPIC。智能功率模塊——IPM。實(shí)際應(yīng)用電路411.6

電力電子器件器件的驅(qū)動(dòng)1.6.1電力電子器件驅(qū)動(dòng)電路概述1.6.2晶閘管的觸發(fā)電路1.6.3典型全控型器件的驅(qū)動(dòng)電路421.6.1電力電子器件驅(qū)動(dòng)電路概述使電力電子器件工作在較理想的開關(guān)狀態(tài),縮短開關(guān)時(shí)間,減小開關(guān)損耗。對(duì)裝置的運(yùn)行效率、可靠性和安全性都有重要的意義。一些保護(hù)措施也往往設(shè)在驅(qū)動(dòng)電路中,或通過驅(qū)動(dòng)電路實(shí)現(xiàn)。驅(qū)動(dòng)電路的基本任務(wù):按控制目標(biāo)的要求施加開通或關(guān)斷的信號(hào)。對(duì)半控型器件只需提供開通控制信號(hào)。對(duì)全控型器件則既要提供開通控制信號(hào),又要提供關(guān)斷控制信號(hào)。驅(qū)動(dòng)電路——主電路與控制電路之間的接口431.6.1電力電子器件驅(qū)動(dòng)電路概述驅(qū)動(dòng)電路還要提供控制電路與主電路之間的電氣隔離環(huán)節(jié),一般采用光隔離或磁隔離。

光隔離一般采用光耦合器

磁隔離的元件通常是脈沖變壓器圖1-25光耦合器的類型及接法a)普通型b)高速型c)高傳輸比型441.6.1電力電子器件驅(qū)動(dòng)電路概述按照驅(qū)動(dòng)信號(hào)的性質(zhì)分,可分為電流驅(qū)動(dòng)型和電壓驅(qū)動(dòng)型。驅(qū)動(dòng)電路具體形式可為分立元件的,但目前的趨勢(shì)是采用專用集成驅(qū)動(dòng)電路。雙列直插式集成電路及將光耦隔離電路也集成在內(nèi)的混合集成電路。為達(dá)到參數(shù)最佳配合,首選所用器件生產(chǎn)廠家專門開發(fā)的集成驅(qū)動(dòng)電路。分類451.6.2晶閘管的觸發(fā)電路作用:產(chǎn)生符合要求的門極觸發(fā)脈沖,保證晶閘管在需要的時(shí)刻由阻斷轉(zhuǎn)為導(dǎo)通。晶閘管觸發(fā)電路應(yīng)滿足下列要求:(基本要求)脈沖的寬度應(yīng)保證晶閘管可靠導(dǎo)通。--足夠的寬度。觸發(fā)脈沖應(yīng)有足夠的幅度。除非電壓、電流有一定的過沖,但是又不超過門極電壓、電流和功率定額。在可靠觸發(fā)區(qū)域之內(nèi)。有良好的抗干擾性能、溫度穩(wěn)定性及與主電路的電氣隔離。有一定的移相范圍。tIIMt1t2t3t4圖1-26理想的晶閘管觸發(fā)脈沖電流波形t1~t2脈沖前沿上升時(shí)間(<1s)t1~t3強(qiáng)脈寬度IM強(qiáng)脈沖幅值(3IGT~5IGT)t1~t4脈沖寬度I脈沖平頂幅值(1.5IGT~2IGT)晶閘管的觸發(fā)電路461.6.2晶閘管的觸發(fā)電路V1、V2構(gòu)成脈沖放大環(huán)節(jié)。脈沖變壓器TM和附屬電路構(gòu)成脈沖輸出環(huán)節(jié)。

V1、V2導(dǎo)通時(shí),通過脈沖變壓器向晶閘管的門極和陰極之間輸出觸發(fā)脈沖。圖1-27常見的晶閘管觸發(fā)電路常見的晶閘管觸發(fā)電路471.6.3

典型全控型器件的驅(qū)動(dòng)電路(1)GTOGTO的開通控制與普通晶閘管相似。GTO關(guān)斷控制需施加負(fù)門極電流。圖1-28推薦的GTO門極電壓電流波形OttOuGiG1)電流驅(qū)動(dòng)型器件的驅(qū)動(dòng)電路正的門極電流5V的負(fù)偏壓GTO驅(qū)動(dòng)電路通常包括開通驅(qū)動(dòng)電路、關(guān)斷驅(qū)動(dòng)電路和門極反偏電路三部分,可分為脈沖變壓器耦合式和直接耦合式兩種類型。481.6.3

典型全控型器件的驅(qū)動(dòng)電路直接耦合式驅(qū)動(dòng)電路可避免電路內(nèi)部的相互干擾和寄生振蕩,可得到較陡的脈沖前沿。目前應(yīng)用較廣,但其功耗大,效率較低。圖1-29典型的直接耦合式GTO驅(qū)動(dòng)電路491.6.3

典型全控型器件的驅(qū)動(dòng)電路開通驅(qū)動(dòng)電流應(yīng)使GTR處于準(zhǔn)飽和導(dǎo)通狀態(tài),使之不進(jìn)入放大區(qū)和深飽和區(qū)。關(guān)斷GTR時(shí),施加一定的負(fù)基極電流有利于減小關(guān)斷時(shí)間和關(guān)斷損耗。關(guān)斷后同樣應(yīng)在基射極之間施加一定幅值(6V左右)的負(fù)偏壓。tOib

圖1-30理想的GTR基極驅(qū)動(dòng)電流波形(2)GTR501.6.3

典型全控型器件的驅(qū)動(dòng)電路GTR的一種驅(qū)動(dòng)電路,包括電氣隔離和晶體管放大電路兩部分。圖1-31GTR的一種驅(qū)動(dòng)電路驅(qū)動(dòng)GTR的集成驅(qū)動(dòng)電路中,THOMSON公司的UAA4002和三菱公司的M57215BL較為常見。511.6.3

典型全控型器件的驅(qū)動(dòng)電路電力MOSFET和IGBT是電壓驅(qū)動(dòng)型器件。為快速建立驅(qū)動(dòng)電壓,要求驅(qū)動(dòng)電路輸出電阻小。使MOSFET開通的驅(qū)動(dòng)電壓一般10~15V,使IGBT開通的驅(qū)動(dòng)電壓一般15~20V。關(guān)斷時(shí)施加一定幅值的負(fù)驅(qū)動(dòng)電壓(一般取-5~-15V)有利于減小關(guān)斷時(shí)間和關(guān)斷損耗。在柵極串入一只低值電阻可以減小寄生振蕩。2)電壓驅(qū)動(dòng)型器件的驅(qū)動(dòng)電路521.6.3

典型全控型器件的驅(qū)動(dòng)電路(1)電力MOSFET的一種驅(qū)動(dòng)電路:電氣隔離和晶體管放大電路兩部分圖1-32電力MOSFET的一種驅(qū)動(dòng)電路專為驅(qū)動(dòng)電力MOSFET而設(shè)計(jì)的混合集成電路有三菱公司的M57918L,其輸入信號(hào)電流幅值為16mA,輸出最大脈沖電流為+2A和-3A,輸出驅(qū)動(dòng)電壓+15V和-10V。

531.6.3

典型全控型器件的驅(qū)動(dòng)電路(2)IGBT的驅(qū)動(dòng)圖1-33M57962L型IGBT驅(qū)動(dòng)器的原理和接線圖常用的有三菱公司的M579系列(如M57962L和M57959L)和富士公司的EXB系列(如EXB840、EXB841、EXB850和EXB851)。

多采用專用的混合集成驅(qū)動(dòng)器。541.7電力電子器件器件的保護(hù)1.7.1過電壓的產(chǎn)生及過電壓保護(hù)1.7.2過電流保護(hù)1.7.3緩沖電路551.7.1過電壓的產(chǎn)生及過電壓保護(hù)外因過電壓:主要來自雷擊和系統(tǒng)操作過程等外因操作過電壓:由分閘、合閘等開關(guān)操作引起雷擊過電壓:由雷擊引起內(nèi)因過電壓:主要來自電力電子裝置內(nèi)部器件的開關(guān)過程換相過電壓:晶閘管或與全控型器件反并聯(lián)的二極管在換相結(jié)束后,反向電流急劇減小,會(huì)由線路電感在器件兩端感應(yīng)出過電壓。關(guān)斷過電壓:全控型器件關(guān)斷時(shí),正向電流迅速降低而由線路電感在器件兩端感應(yīng)出的過電壓。電力電子裝置可能的過電壓——外因過電壓和內(nèi)因過電壓561.7.1過電壓的產(chǎn)生及過電壓保護(hù)過電壓保護(hù)措施圖1-34過電壓抑制措施及配置位置F避雷器D變壓器靜電屏蔽層C靜電感應(yīng)過電壓抑制電容RC1閥側(cè)浪涌過電壓抑制用RC電路RC2閥側(cè)浪涌過電壓抑制用反向阻斷式RC電路RV壓敏電阻過電壓抑制器RC3閥器件換相過電壓抑制用RC電路RC4直流側(cè)RC抑制電路RCD閥器件關(guān)斷過電壓抑制用RCD電路電力電子裝置可視具體情況只采用其中的幾種。其中RC3和RCD為抑制內(nèi)因過電壓的措施,屬于緩沖電路范疇。571.7.2過電流保護(hù)過電流——過載和短路兩種情況保護(hù)措施負(fù)載觸發(fā)電路開關(guān)電路過電流繼電器交流斷路器動(dòng)作電流整定值短路器電流檢測(cè)電子保護(hù)電路快速熔斷器變流器直流快速斷路器電流互感器變壓器同時(shí)采用幾種過電流保護(hù)措施,提高可靠性和合理性。電子電路作為第一保護(hù)措施,快熔僅作為短路時(shí)的部分區(qū)段的保護(hù),直流快速斷路器整定在電子電路動(dòng)作之后實(shí)現(xiàn)保護(hù),過電流繼電器整定在過載時(shí)動(dòng)作。圖1-37過電流保護(hù)措施及配置位置581.7.2過電流保護(hù)全保護(hù):過載、短路均由快熔進(jìn)行保護(hù),適用于小功率裝置或器件裕度較大的場(chǎng)合。短路保護(hù):快熔只在短路電流較大的區(qū)域起保護(hù)作用。對(duì)重要的且易發(fā)生短路的晶閘管設(shè)備,或全控型器件,需采用電子電路進(jìn)行過電流保護(hù)。常在全控型器件的驅(qū)動(dòng)電路中設(shè)置過電流保護(hù)環(huán)節(jié),響應(yīng)最快??烊蹖?duì)器件的保護(hù)方式:全保護(hù)和短路保護(hù)兩種591.7.3

緩沖電路關(guān)斷緩沖電路(du/dt抑制電路)——吸收器件的關(guān)斷過電壓和換相過電壓,抑制du/d

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論