版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=22.對于實數(shù)x,我們規(guī)定表示不大于x的最大整數(shù),例如,,,若,則x的取值可以是()A.40 B.45 C.51 D.563.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據是()A.SAS B.SSS C.AAS D.ASA4.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個5.用加減法解方程組時,如果消去y,最簡捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣① D.②×2+①6.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數(shù)為()A.0個 B.1個 C.2個 D.3個7.在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(
)A.9人 B.10人 C.11人 D.12人8.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.9.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x>0 B.x≥0 C.x≠0 D.任意實數(shù)10.光年天文學中的距離單位,1光年大約是9500000000000km,用科學記數(shù)法表示為A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.12.因式分解:9a3b﹣ab=_____.13.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內部的點F處.若∠CBF=25°,則∠FDA的度數(shù)為_________.14.如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點P在圓B上移動,連接AP,并將AP繞點A逆時針旋轉90°至Q,連接BQ,在點P移動過程中,BQ長度的最小值為_____.15.對于任意實數(shù)m、n,定義一種運算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運算,例如:3※5=3×5﹣3﹣5+3=1.請根據上述定義解決問題:若a<2※x<7,且解集中有兩個整數(shù)解,則a的取值范圍是_____.16.高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數(shù)量記錄如下:收費出口編號通過小客車數(shù)量(輛)260330300360240在五個收費出口中,每20分鐘通過小客車數(shù)量最多的一個出口的編號是___________.17.如圖,在每個小正方形的邊長為1的網格中,點A,B,C均在格點上.(Ⅰ)AC的長等于_____;(Ⅱ)在線段AC上有一點D,滿足AB2=AD?AC,請在如圖所示的網格中,用無刻度的直尺,畫出點D,并簡要說明點D的位置是如何找到的(不要求證明)_____.三、解答題(共7小題,滿分69分)18.(10分)某工廠計劃生產,兩種產品共10件,其生產成本和利潤如下表.種產品種產品成本(萬元件)25利潤(萬元件)13(1)若工廠計劃獲利14萬元,問,兩種產品應分別生產多少件?(2)若工廠計劃投入資金不多于44萬元,且獲利多于22萬元,問工廠有哪幾種生產方案?19.(5分)趙亮同學想利用影長測量學校旗桿的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測得其長度為9.6米和2米,則學校旗桿的高度為________米.20.(8分)解不等式組:,并把解集在數(shù)軸上表示出來。21.(10分)如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求證:四邊形ABCD是菱形;過點D作DE⊥BD,交BC的延長線于點E,若BC=5,BD=8,求四邊形ABED的周長.22.(10分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.23.(12分)如圖,兩座建筑物的水平距離為.從點測得點的仰角為53°,從點測得點的俯角為37°,求兩座建筑物的高度(參考數(shù)據:24.(14分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規(guī)則如下:在兩個盒子內分別裝入標有數(shù)字1,2,3,4的四個和標有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于5,那么小王去,否則就是小李去.(1)用樹狀圖或列表法求出小王去的概率;(2)小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.2、C【解析】
解:根據定義,得∴解得:.故選C.3、B【解析】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關鍵是掌握全等三角形的判定定理.4、D【解析】試題分析:根據有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).5、D【解析】試題解析:用加減法解方程組時,如果消去y,最簡捷的方法是②×2+①,故選D.6、A【解析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.7、C【解析】
設參加酒會的人數(shù)為x人,根據每兩人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設參加酒會的人數(shù)為x人,依題可得:
x(x-1)=55,
化簡得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案為C.【點睛】考查了一元二次方程的應用,解題的關鍵是根據題中的等量關系列出方程.8、C【解析】
先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據等邊三角形的性質求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點睛】本題考查切線長定理,掌握切線長定理是解題的關鍵.9、C【解析】
根據分式和二次根式有意義的條件進行解答.【詳解】解:依題意得:x2≥1且x≠1.解得x≠1.故選C.【點睛】考查了分式有意義的條件和二次根式有意義的條件.解題時,注意分母不等于零且被開方數(shù)是非負數(shù).10、C【解析】
科學記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將9500000000000km用科學記數(shù)法表示為.故選C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題(共7小題,每小題3分,滿分21分)11、12.2【解析】
∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.12、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.13、50°【解析】
延長BF交CD于G,根據折疊的性質和平行四邊形的性質,證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數(shù).【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質,平行四邊形的性質,全等三角形的判定與性質.證明△BCG≌△DAE是解答本題的關鍵.14、3﹣1【解析】
通過畫圖發(fā)現(xiàn),點Q的運動路線為以D為圓心,以1為半徑的圓,可知:當Q在對角線BD上時,BQ最小,先證明△PAB≌△QAD,則QD=PB=1,再利用勾股定理求對角線BD的長,則得出BQ的長.【詳解】如圖,當Q在對角線BD上時,BQ最小.連接BP,由旋轉得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ長度的最小值為(3﹣1).故答案為3﹣1.【點睛】本題是圓的綜合題.考查了正方形的性質、旋轉的性質和最小值問題,尋找點Q的運動軌跡是本題的關鍵,通過證明兩三角形全等求出BQ長度的最小值最小值.15、【解析】
解:根據題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數(shù)解,∴a的范圍為,故答案為.【點睛】本題考查一元一次不等式組的整數(shù)解,準確理解題意正確計算是本題的解題關鍵.16、B【解析】
利用同時開放其中的兩個安全出口,20分鐘所通過的小車的數(shù)量分析對比,能求出結果.【詳解】同時開放A、E兩個安全出口,與同時開放D、E兩個安全出口,20分鐘的通過數(shù)量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時開放BC與CD進行對比,可知B疏散乘客比D快;同理同時開放BC與AB進行對比,可知C疏散乘客比A快;同理同時開放DE與CD進行對比,可知E疏散乘客比C快;同理同時開放AB與AE進行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點睛】本題考查簡單的合理推理,考查推理論證能力等基礎知識,考查運用求解能力,考查函數(shù)與方程思想,是基礎題.17、5見解析.【解析】
(1)由勾股定理即可求解;(2)尋找格點M和N,構建與△ABC全等的△AMN,易證MN⊥AC,從而得到MN與AC的交點即為所求D點.【詳解】(1)AC=;(2)如圖,連接格點M和N,由圖可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN為底時的高為,∵AB2=AD?AC,∴AD=AB2÷AC=,綜上可知,MN與AC的交點即為所求D點.【點睛】本題考查了平面直角坐標系中定點的問題,理解第2問中構造全等三角形從而確定D點的思路.三、解答題(共7小題,滿分69分)18、(1)生產產品8件,生產產品2件;(2)有兩種方案:方案①,種產品2件,則種產品8件;方案②,種產品3件,則種產品7件.【解析】
(1)設生產種產品件,則生產種產品件,根據“工廠計劃獲利14萬元”列出方程即可得出結論;(2)設生產產品件,則生產產品件,根據題意,列出一元一次不等式組,求出y的取值范圍,即可求出方案.【詳解】解:(1)設生產種產品件,則生產種產品件,依題意得:,解得:,則,答:生產產品8件,生產產品2件;(2)設生產產品件,則生產產品件,解得:.因為為正整數(shù),故或3;答:共有兩種方案:方案①,種產品2件,則種產品8件;方案②,種產品3件,則種產品7件.【點睛】此題考查的是一元一次方程的應用和一元一次不等式組的應用,掌握實際問題中的等量關系和不等關系是解決此題的關鍵.19、10【解析】試題分析:根據相似的性質可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點:相似的應用20、,解集在數(shù)軸上表示見解析【解析】試題分析:先解不等式組中的每一個不等式,得到不等式組的解集,再把不等式的解集表示在數(shù)軸上即可.試題解析:由①得:由②得:∴不等式組的解集為:解集在數(shù)軸上表示為:21、(1)詳見解析;(2)1.【解析】
(1)根據平行線的性質得到∠ADB=∠CBD,根據角平分線定義得到∠ABD=∠CBD,等量代換得到∠ADB=∠ABD,根據等腰三角形的判定定理得到AD=AB,根據菱形的判定即可得到結論;(2)由垂直的定義得到∠BDE=90°,等量代換得到∠CDE=∠E,根據等腰三角形的判定得到CD=CE=BC,根據勾股定理得到DE==6,于是得到結論.【詳解】(1)證明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四邊形ABCD是平行四邊形,∵BA=BC,∴四邊形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四邊形ABCD是菱形,∴AD=AB=BC=5,∴四邊形ABED的周長=AD+AB+BE+DE=1.【點睛】本題考查了菱形的判定和性質,角平分線定義,平行線的性質,勾股定理,等腰三角形的性質,正確的識別圖形是解題的關鍵.22、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據二次函數(shù)的性質可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據等腰三角形的性質求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設直線C′N的解析式為y=kx+b,把C′、N點坐標代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標為(,0);(2)設點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(?。┤鬌O=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質得:OM=OD=1,∴AM=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年工程促成居間合同集錦
- 2024年工程助理勞務合作協(xié)議
- 2024丙丁雙方關于虛擬現(xiàn)實技術開發(fā)與應用合同
- 2024年嚴馳鄭黛共同發(fā)起的公益項目捐贈合同
- 井區(qū)安全員年終個人述職匯報-述職報告范文
- 2024年廣告效果監(jiān)測與評估合同
- 2024年度石油天然氣管道建設合同
- 2024年度網頁美工設計外包合同
- 2024年度圖書訂閱合同
- 2024年度旅游管理與服務合同
- 裝修垃圾清運處置方案
- JC-T 2536-2019水泥-水玻璃灌漿材料
- 品牌授權協(xié)議書
- 藝術設計就業(yè)職業(yè)生涯規(guī)劃
- 《狙擊手》和《新神榜楊戩》電影賞析
- 槍庫應急處置預案
- 老年患者術后譫妄的護理干預
- 《凸透鏡成像的規(guī)律》課件
- 倉庫管理中的客戶服務和溝通技巧
- 規(guī)劃選址及用地預審
- 土砂石料廠項目融資計劃書
評論
0/150
提交評論