利用向量證明垂直與平行問題_第1頁
利用向量證明垂直與平行問題_第2頁
利用向量證明垂直與平行問題_第3頁
利用向量證明垂直與平行問題_第4頁
利用向量證明垂直與平行問題_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

3.2立體幾何中的向量方法(2)xxz----利用向量解決平行與垂直問題1、用空間向量解決立體幾何問題的“三步曲”

(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;

(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進(jìn)行向量運算)(回到圖形問題)2、平行與垂直關(guān)系的向量表示(1)平行關(guān)系設(shè)直線l,m的方向向量分別為

,,平面,的法向量分別為,線線平行線面平行面面平行點擊點擊點擊

(2)垂直關(guān)系設(shè)直線l,m的方向向量分別為

,,平面,的法向量分別為,線線垂直線面垂直面面垂直點擊點擊點擊二、新課

(一)用向量處理平行問題(二)用向量處理垂直問題XYZ(一)用向量處理平行問題XYZ例3、如圖,在直三棱柱-中,是棱的中點,求證:(二)用向量處理垂直問題證明:分別以所在直線為軸,軸,軸,建立空間直角坐標(biāo)系圖中相應(yīng)點的坐標(biāo)為:所以:所以:即,DACBBCDAFEXYZDACBBCDAFEXYZ例5正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點,求證:面AED⊥面A1FDzxyABCDFEA1B1C1D1

證明:以A為原點建立如圖所示的的直角坐標(biāo)系A(chǔ)-xyz,設(shè)正方體的棱長為2,則E(2,0,1),A1(0,0,2),F(1,2,0),D(0,2,0),于是設(shè)平面AED的法向量為n1=(x,y,z)得解之得取z=2得n1=(-1,0,2)同理可得平面A1FD的法向量為n2=(2,0,1)∵n1·n2=-2+0+2=0∴面AED⊥面A1FD練習(xí):棱長都等于2的正三棱柱ABC-A1B1C1,D,E分別是AC,CC1的中點,求證:(I)A1E⊥平面DBC1;(II)AB1∥平面DBC1A1C1B1ACBEDzxy解:以D為原點,DA為x軸,DB為y軸建立空間直角坐標(biāo)系D-xyz.則A(-1,0,0),B(0,,0),E(1,0,1),A1(-1,0,2),B1(0,,2),C1(1,0,2).設(shè)平面DBC1的法向量為n=(x,y,z),則解之得,取z=1得n=(-2,0,1)(I)=-n,從而A1E⊥平面DBC1(II),而

n=-2+0+2=0AB1

∥平面DBC1坐標(biāo)法三、小結(jié)利用向量解決平行與垂直問題向量法:利用向量的概念技巧運算解決問題。坐標(biāo)法:利用數(shù)及其運算解決問題。

兩種方法經(jīng)常結(jié)合起來使用。ABCD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論