版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.2.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.3.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個(gè)位置,使得;(3)設(shè)二面角的平面角為,則;(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.其中,正確說法的個(gè)數(shù)是()A.1 B.2 C.3 D.44.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.195.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且6.函數(shù)在的圖象大致為A. B.C. D.7.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過點(diǎn)F關(guān)于原點(diǎn)的對(duì)稱點(diǎn).則雙曲線的離心率是()A. B. C. D.8.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.9.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.11.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.12.已知集合,,,則的子集共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)二、填空題:本題共4小題,每小題5分,共20分。13.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.14.從集合中隨機(jī)取一個(gè)元素,記為,從集合中隨機(jī)取一個(gè)元素,記為,則的概率為_______.15.已知△ABC得三邊長成公比為2的等比數(shù)列,則其最大角的余弦值為_____.16.如圖,直線平面,垂足為,三棱錐的底面邊長和側(cè)棱長都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_______,點(diǎn)到直線的距離的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=f(x)1,若函數(shù)g(x)在上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.18.(12分)在四棱錐的底面是菱形,底面,,分別是的中點(diǎn),.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說明理由.19.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.20.(12分)如圖,在三棱柱中,、、分別是、、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.21.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前2020項(xiàng)的和.22.(10分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動(dòng)新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺(tái))按季度(一年四個(gè)季度)統(tǒng)計(jì)制成的頻率分布直方圖.(1)求直方圖中的值,并估計(jì)銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計(jì)新能源汽車平均每個(gè)季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計(jì)年的銷售量.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.2、A【解析】
由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因?yàn)椋缘慕饧癁?,故選:A.【點(diǎn)睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計(jì)算求解能力與推理能力,屬于基礎(chǔ)題.3、C【解析】
解:對(duì)于(1),當(dāng)CD⊥平面ABE,且E在AB的右上方時(shí),E到平面BCD的距離最大,當(dāng)CD⊥平面ABE,且E在AB的左下方時(shí),E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對(duì)于(2),連接DE,若存在某個(gè)位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進(jìn)一步可得AE=DE,此時(shí)E﹣ABD為正三棱錐,故(2)正確;對(duì)于(3),取AB中點(diǎn)O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對(duì)于(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,P到BC的距離為:dP﹣BC,因?yàn)椋?,所以點(diǎn)P的軌跡為橢圓.(4)正確.故選:C.點(diǎn)睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對(duì)應(yīng)的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過程中,需要認(rèn)真分析,得到結(jié)果,注意對(duì)知識(shí)點(diǎn)的靈活運(yùn)用.4、B【解析】
計(jì)算,故,解得答案.【詳解】當(dāng)時(shí),,即,且.故,,故.故選:.【點(diǎn)睛】本題考查了數(shù)列的相關(guān)計(jì)算,意在考查學(xué)生的計(jì)算能力和對(duì)于數(shù)列公式方法的綜合應(yīng)用.5、B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點(diǎn)睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.6、A【解析】
因?yàn)?,所以排除C、D.當(dāng)從負(fù)方向趨近于0時(shí),,可得.故選A.7、B【解析】
由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點(diǎn)睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問題和解決問題的能力,難度一般.8、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.9、A【解析】
本題根據(jù)基本不等式,結(jié)合選項(xiàng),判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識(shí)、基礎(chǔ)知識(shí)、邏輯推理能力的考查.【詳解】當(dāng)時(shí),,則當(dāng)時(shí),有,解得,充分性成立;當(dāng)時(shí),滿足,但此時(shí),必要性不成立,綜上所述,“”是“”的充分不必要條件.【點(diǎn)睛】易出現(xiàn)的錯(cuò)誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.10、A【解析】
用排除法,通過函數(shù)圖像的性質(zhì)逐個(gè)選項(xiàng)進(jìn)行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設(shè),由于,排除B選項(xiàng);由于,所以,排除C選項(xiàng);由于當(dāng)時(shí),,排除D選項(xiàng).故A選項(xiàng)正確.故選:A【點(diǎn)睛】本題考查了函數(shù)圖像的性質(zhì),屬于中檔題.11、D【解析】
直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.12、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計(jì)算,可得結(jié)果.【詳解】由題可知:,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個(gè)數(shù)的計(jì)算,當(dāng)集合中有元素時(shí),集合子集的個(gè)數(shù)為,真子集個(gè)數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
先求出隨機(jī)抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結(jié)果.【詳解】解:從集合中隨機(jī)取一個(gè)元素,記為,從集合中隨機(jī)取一個(gè)元素,記為,則的事件數(shù)為9個(gè),即為,,,其中滿足的有,,,共有8個(gè),故的概率為.【點(diǎn)睛】本題考查了古典概型的計(jì)算,解題的關(guān)鍵是準(zhǔn)確列舉出所有事件數(shù).15、-【解析】試題分析:根據(jù)題意設(shè)三角形的三邊長分別設(shè)為為a,2a,2a,∵2a>2a>a,∴2a所對(duì)的角為最大角,設(shè)為θ,則根據(jù)余弦定理得考點(diǎn):余弦定理及等比數(shù)列的定義.16、【解析】
三棱錐的底面邊長和側(cè)棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長為,則中線長為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長和側(cè)棱長都為4,以下求過和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】
(1)當(dāng)a=2時(shí),求出,求解,即可得出結(jié)論;(2)函數(shù)在上有兩個(gè)零點(diǎn)等價(jià)于a=2x在上有兩解,構(gòu)造函數(shù),,利用導(dǎo)數(shù),可分析求得實(shí)數(shù)a的取值范圍.【詳解】(1)當(dāng)a=2時(shí),定義域?yàn)?,則,令,解得x1,或x1(舍去),所以當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)設(shè),函數(shù)g(x)在上有兩個(gè)零點(diǎn)等價(jià)于在上有兩解令,,則,令,,顯然,在區(qū)間上單調(diào)遞增,又,所以當(dāng)時(shí),有,即,當(dāng)時(shí),有,即,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,時(shí),取得極小值,也是最小值,即,由方程在上有兩解及,可得實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、等價(jià)轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.18、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個(gè)法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點(diǎn)存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點(diǎn)存在,設(shè),,據(jù)此可得:,即:,從而點(diǎn)F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點(diǎn)F為中點(diǎn)時(shí)滿足題意.【點(diǎn)睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19、(1)證明見詳解;(2).【解析】
(1)取中點(diǎn)為,通過證明//,進(jìn)而證明線面平行;(2)取中點(diǎn)為,以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求得兩個(gè)平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點(diǎn),連結(jié),,如下圖所示:在中,因?yàn)闉榈闹悬c(diǎn),,且,又為的中點(diǎn),,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點(diǎn),連結(jié),,則,平面,以為原點(diǎn),分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個(gè)法向量,則,則,令.則,同理得平面的一個(gè)法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.20、(1)證明見解析;(2).【解析】
(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計(jì)算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),、分別為、的中點(diǎn),則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)副產(chǎn)品跨境電商銷售合同3篇
- 二零二五年度個(gè)人醫(yī)療費(fèi)用墊付公對(duì)私借款合同3篇
- 二零二五年度內(nèi)蒙古自治區(qū)體育行業(yè)勞動(dòng)合同書3篇
- 2025年度林業(yè)科研基地樹木移植補(bǔ)償合同3篇
- 2025年度老舊小區(qū)電梯加裝工程設(shè)計(jì)與施工合同2篇
- 二零二五年度個(gè)人戶外運(yùn)動(dòng)裝備公對(duì)私借款合同3篇
- 二零二五年度港口碼頭岸電設(shè)施建設(shè)合同3篇
- 2025年度林業(yè)資源開發(fā)承包經(jīng)營權(quán)轉(zhuǎn)讓合同3篇
- 2024年沈陽市骨科醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 2024年中國氣門油封拆裝組市場調(diào)查研究報(bào)告
- 2025共團(tuán)永康市委下屬青少年綜合服務(wù)中心駐團(tuán)市委機(jī)關(guān)人員招聘2人(浙江)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年計(jì)算機(jī)二級(jí)WPS考試題目
- 智能 檢測與監(jiān)測 技術(shù)-智能建造技術(shù)專01課件講解
- GB/T 750-2024水泥壓蒸安定性試驗(yàn)方法
- 供應(yīng)商年度審核計(jì)劃及現(xiàn)場審核表
- 環(huán)甲膜穿刺ppt課件
- 裝配基礎(chǔ)知識(shí)要點(diǎn)
- 電腦全自動(dòng)插拔力試驗(yàn)機(jī)操作指導(dǎo)書
- 人臉識(shí)別系統(tǒng)采購安裝規(guī)定合同范本
- 重慶市水利工程驗(yàn)收管理辦法
- 傳感器課程設(shè)計(jì)超聲波傳感器
評(píng)論
0/150
提交評(píng)論