版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖南省湘潭市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
2.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
3.在企業(yè)中,財(cái)務(wù)主管與財(cái)會(huì)人員之間的職權(quán)關(guān)系是()
A.直線職權(quán)關(guān)系B.參謀職權(quán)關(guān)系C.既是直線職權(quán)關(guān)系又是參謀職權(quán)關(guān)系D.沒(méi)有關(guān)系
4.
A.0B.2C.4D.8
5.
6.
A.(-2,2)
B.(-∞,0)
C.(0,+∞)
D.(-∞,+∞)
7.
8.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
9.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
10.
11.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
12.A.
B.
C.
D.
13.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-314.()。A.2ex+C
B.ex+C
C.2e2x+C
D.e2x+C
15.
16.
17.若,則下列命題中正確的有()。A.
B.
C.
D.
18.當(dāng)x→0時(shí),2x+x2是x的A.A.等價(jià)無(wú)窮小B.較低階無(wú)窮小C.較高階無(wú)窮小D.同階但不等價(jià)的無(wú)窮小
19.函數(shù)z=x2-xy+y2+9x-6y+20有
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
20.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
二、填空題(20題)21.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為_(kāi)_________.22.23.24.二元函數(shù)z=x2+y2+1的極小值為_(kāi)______.
25.
26.
27.
28.
29.
30.
31.
32.33.直線的方向向量為_(kāi)_______。34.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.35.設(shè)z=x3y2,則=________。36.
37.
38.設(shè)區(qū)域D:x2+y2≤a2,x≥0,則
39.
40.
三、計(jì)算題(20題)41.42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.44.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.
47.求曲線在點(diǎn)(1,3)處的切線方程.
48.
49.證明:50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則51.
52.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.56.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).57.求微分方程的通解.58.59.
60.
四、解答題(10題)61.62.
63.
64.
65.求微分方程y"-y'-2y=0的通解。
66.
67.求由曲線xy=1及直線y=x,y=2所圍圖形的面積A。
68.(本題滿分8分)
69.求由方程確定的y=y(x)的導(dǎo)函數(shù)y'.
70.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.
五、高等數(shù)學(xué)(0題)71.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合六、解答題(0題)72.
參考答案
1.DA,∫1+∞xdx==∞發(fā)散;
2.D
3.A解析:直線職權(quán)是指管理者直接指導(dǎo)下屬工作的職權(quán)。財(cái)務(wù)主管與財(cái)會(huì)人員之間是直線職權(quán)關(guān)系。
4.A解析:
5.D
6.A
7.C
8.B
9.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
10.A
11.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
12.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
13.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
14.B
15.A
16.D
17.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
18.D
19.D本題考查了函數(shù)的極值的知識(shí)點(diǎn)。
20.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.21.[-1,122.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
23.解析:24.1;本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
25.
26.(-35)(-3,5)解析:
27.
28.22解析:
29.[01)∪(1+∞)
30.
31.
32.
本題考查的知識(shí)點(diǎn)為求直線的方程.
由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為
33.直線l的方向向量為34.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
35.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。36.本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得
37.-ln2
38.
解析:本題考查的知識(shí)點(diǎn)為二重積分的性質(zhì).
39.
40.2
41.
42.
43.函數(shù)的定義域?yàn)?/p>
注意
44.
45.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
46.47.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.
49.
50.由等價(jià)無(wú)窮小量的定義可知
51.
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
53.
列表:
說(shuō)明
54.由二重積分物理意義知
55.
56.
57.
58.59.由一階線性微分方程通解公式有
60
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 對(duì)數(shù)函數(shù)及性質(zhì)課件
- 2024年版道路橋梁建設(shè)項(xiàng)目招標(biāo)合同版B版
- 2024年智能交通管理系統(tǒng)開(kāi)發(fā)與應(yīng)用協(xié)議
- 2024年土地置換與鄉(xiāng)村旅游資源開(kāi)發(fā)合同3篇
- 五年級(jí)上冊(cè)第五單元綜合性學(xué)習(xí)課件
- 2025年柳州貨運(yùn)從業(yè)資格證怎么考試
- 2025年廣州貨運(yùn)從業(yè)資格證模擬考試試題
- 2025年鶴崗貨運(yùn)從業(yè)資格證模擬考
- 2025年陜西從業(yè)資格貨運(yùn)資格考試題庫(kù)及答案
- 2025年南寧年貨運(yùn)資格證考試題
- 申請(qǐng)核電廠潛在供應(yīng)商資質(zhì)及核安全設(shè)備制造資質(zhì)指南
- 質(zhì)檢部組織架構(gòu)
- 配色模紋組織面料的認(rèn)識(shí)(文字稿)
- 注塑產(chǎn)品首件檢驗(yàn)表
- 復(fù)合風(fēng)管施工方案
- XX年度零星維修項(xiàng)目招標(biāo)文件范本
- 《建筑制圖基礎(chǔ)實(shí)訓(xùn)》畫(huà)圖大作業(yè)布置
- 三大國(guó)際關(guān)系理論對(duì)國(guó)際體系的不同認(rèn)識(shí)
- 發(fā)動(dòng)機(jī)連桿的有限元分析
- 通電試運(yùn)行施工方案
- 蘇教版八年級(jí)上冊(cè)數(shù)學(xué)《1.1 全等圖形》課件
評(píng)論
0/150
提交評(píng)論