2023屆山東省即墨市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2023屆山東省即墨市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2023屆山東省即墨市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2023屆山東省即墨市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2023屆山東省即墨市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.同桌讀了:“子非魚焉知魚之樂乎?”后,興高采烈地利用電腦畫出了幾幅魚的圖案,請問:由左圖中所示的圖案平移后得到的圖案是()A. B. C. D.2.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關系是()A.相離 B.相切 C.相交 D.相交或相切3.如圖,小明在打乒乓球時,為使球恰好能過網(wǎng)(設網(wǎng)高AB=15cm),且落在對方區(qū)域桌子底線C處,已知小明在自己桌子底線上方擊球,則他擊球點距離桌面的高度DE為()A.15cm B.20cm C.25cm D.30cm4.如圖所示的物體組合,它的左視圖是()A. B. C. D.5.如圖,數(shù)軸上,,,四點中,能表示點的是()A. B. C. D.6.如圖所示,已知△ABC中,BC=12,BC邊上的高h=6,D為BC上一點,EF∥BC,交AB于點E,交AC于點F,設點E到邊BC的距離為x.則△DEF的面積y關于x的函數(shù)圖象大致為()A. B. C. D.7.如圖,△ABC中,DE∥BC,則下列等式中不成立的是()A. B. C. D.8.方程x2﹣2x﹣4=0的根的情況()A.只有一個實數(shù)根 B.有兩個不相等的實數(shù)根C.有兩個相等的實數(shù)根 D.沒有實數(shù)根9.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限10.在△ABC中,∠C=90°,a,b,c分別為∠A,∠B,∠C的對邊,下列關系中錯誤的是()A.b=c?cosB B.b=a?tanB C.b=c?sinB D.a(chǎn)=b?tanA11.方程的解是()A.0 B.3 C.0或–3 D.0或312.如圖,△ABC與△A′B′C′是位似圖形,PB′=BB′,A′B′=2,則AB的長為()A.1 B.2 C.4 D.8二、填空題(每題4分,共24分)13.如圖,在矩形中,,點分別在矩形的各邊上,,則四邊形的周長是______________.14.若整數(shù)使關于的二次函數(shù)的圖象在軸的下方,且使關于的分式方程有負整數(shù)解,則所有滿足條件的整數(shù)的和為__________.15.如下圖,圓柱形排水管水平放置,已知截面中有水部分最深為,排水管的截面半徑為,則水面寬是__________.

16.一元二次方程x2﹣4=0的解是._________17.在平面直角坐標系中,點P(﹣2,1)關于原點的對稱點P′的坐標是_____________.18.如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點E,射線AE與BC于F,過點F作FG⊥AC于G,則FG的長為______.三、解答題(共78分)19.(8分)如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.(1)求證:AP是⊙O的切線;(2)求PD的長.20.(8分)如圖,在?ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.(1)求EG:BG的值;(2)求證:AG=OG;(3)設AG=a,GH=b,HO=c,求a:b:c的值.21.(8分)已知拋物線經(jīng)過點(1,0),(0,3).(1)求該拋物線的函數(shù)表達式;(2)將拋物線平移,使其頂點恰好落在原點,請寫出一種平移的方法及平移后的函數(shù)表達式.22.(10分)如圖①,在平行四邊形中,以O為圓心,為半徑的圓與相切于點B,與相交于點D.(1)求的度數(shù).(2)如圖②,點E在上,連結(jié)與交于點F,若,求的度數(shù).23.(10分)已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.(1)求m,n的值,(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,若點B與點M(﹣4,6)關于拋物線對稱軸對稱,求一次函數(shù)的表達式.(3)根據(jù)函數(shù)圖象直接寫出y1>y2時x的取值范圍.24.(10分)在△ABC中,∠C=90°,AD平分∠BAC交BC于點D,BD:DC=2:1,BC=7.8cm,求點D到AB的距離.25.(12分)如圖,二次函數(shù)y=(x﹣2)2+m的圖象與y軸交于點C,點B是點C關于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點A(1,0)及點B.(1)求二次函數(shù)與一次函數(shù)的解析式;(2)根據(jù)圖象,寫出滿足kx+b≥(x﹣2)2+m的x的取值范圍.26.已知關于x的一元二次方程.(1)當m為何值時,方程有兩個不相等的實數(shù)根?(2)設方程兩根分別為、,且2、2分別是邊長為5的菱形的兩條對角線,求m的值.

參考答案一、選擇題(每題4分,共48分)1、B【解析】根據(jù)平移的性質(zhì):“平移不改變圖形的形狀和大小”來判斷即可.【詳解】解:根據(jù)“平移不改變圖形的形狀和大小”知:左圖中所示的圖案平移后得到的圖案是B項,故選B.【點睛】本題考查了平移的性質(zhì),平移的性質(zhì)是“經(jīng)過平移,對應線段平行(或共線)且相等,對應角相等,對應點所連接的線段平行且相等;平移不改變圖形的形狀、大小和方向”.2、A【分析】這條直線與這個圓的位置關系只要比較圓心到直線的距離與半徑的大小關系即可.【詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關系是相離.故選擇:A.【點睛】本題考查直線與圓的位置關系問題,掌握點到直線的距離與半徑的關系是關鍵.3、D【分析】證明△CAB∽△CDE,然后利用相似比得到DE的長.【詳解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故選:D.【點睛】本題考查了相似三角形的應用,用相似三角形對應邊的比相等的性質(zhì)求物體的高度.4、D【分析】通過對簡單組合體的觀察,從左邊看圓柱是一個長方形,從左邊看正方體是一個正方形,但是兩個立體圖形是并排放置的,正方體的左視圖被圓柱的左視圖擋住了,只能看到長方形,鄰邊用虛線畫出即可.【詳解】從左邊看圓柱的左視圖是一個長方形,從左邊看正方體的左視圖是一個正方形,從左邊看圓柱與正方體組合體的左視圖是一個長方形,兩圖形的鄰邊用虛線畫出,則如圖所示的物體組合的左視圖如D選項所示,故選:D.【點睛】本題考查了簡單組合體的三視圖.解答此題要注意進行觀察和思考,既要豐富的數(shù)學知識,又要有一定的生活經(jīng)驗和空間想象力.5、C【解析】首先判斷出的近似值是多少,然后根據(jù)數(shù)軸的特征,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大,判斷出能表示點是哪個即可.【詳解】解:∵≈1.732,在1.5與2之間,∴數(shù)軸上,,,四點中,能表示的點是點P.故選:C【點睛】本題考查了在數(shù)軸上找表示無理數(shù)的點的方法,先求近似數(shù)再描點.6、D【分析】可過點A向BC作AH⊥BC于點H,所以根據(jù)相似三角形的性質(zhì)可求出EF,進而求出函數(shù)關系式,由此即可求出答案.【詳解】過點A向BC作AH⊥BC于點H,所以根據(jù)相似比可知:,即EF=2(6-x)所以y=×2(6-x)x=-x2+6x.(0<x<6)該函數(shù)圖象是拋物線的一部分,故選D.【點睛】此題考查根據(jù)幾何圖形的性質(zhì)確定函數(shù)的圖象和函數(shù)圖象的讀圖能力.要能根據(jù)幾何圖形和圖形上的數(shù)據(jù)分析得出所對應的函數(shù)的類型和所需要的條件,結(jié)合實際意義畫出正確的圖象.7、B【分析】根據(jù)兩直線平行,對應線段成比例即可解答.【詳解】∵DE∥BC,∴△ADE∽△ABC,=,∴,∴選項A,C,D成立,故選:B.【點睛】本題考查平行線分線段成比例的知識,解題的關鍵是熟練掌握平行線分線段成比例定理.8、B【詳解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有兩個不相等的實數(shù)根.故選B.【點睛】一元二次方程根的情況:(1)b2-4ac>0,方程有兩個不相等的實數(shù)根;(2)b2-4ac=0,方程有兩個相等的實數(shù)根;(3)b2-4ac<0,方程沒有實數(shù)根.注:若方程有實數(shù)根,那么b2-4ac≥0.9、A【解析】由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關系,即可得出一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.故選A.【點睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關鍵.10、A【分析】本題可以利用銳角三角函數(shù)的定義求解即可.【詳解】解:在Rt△ABC中,∠C=90°,則tanA=,tanB=,cosB=,sinB=;因而b=c?sinB=a?tanB,a=b?tanA,錯誤的是b=c?cosB.故選:A.【點睛】本題考查三角函數(shù)的定義,熟記定義是解題的關鍵.11、D【解析】運用因式分解法求解.【詳解】由得x(x-3)=0所以,x1=0,x2=3故選D【點睛】掌握因式分解法解一元二次方程.12、C【分析】根據(jù)位似圖形的對應邊互相平行列式計算,得到答案.【詳解】∵△ABC與△A′B′C′是位似圖形,∴A′B′∥AB,∴△PA′B′∽△PAB,∴==,∴AB=4,故選:C.【點睛】本題考查的是位似變換的概念、相似三角形的性質(zhì),掌握如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)矩形的對角線相等,利用勾股定理求出對角線的長度,然后根據(jù)平行線分線段成比例定理列式表示EF、EH的長度之和,再根據(jù)四邊形EFGH是平行四邊形,即可得解.【詳解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四邊形EFGH是平行四邊形,∴四邊形EFGH的周長=,故答案為:.【點睛】本題考查了平行線分線段成比例定理、矩形的對角線相等和勾股定理,根據(jù)平行線分線段成比例定理得出是解題的關鍵,也是本題的難點.14、【分析】根據(jù)二次函數(shù)的圖象在軸的下方得出,,解分式方程得,注意,根據(jù)分式方程有負整數(shù)解求出a,最后結(jié)合a的取值范圍進行求解.【詳解】∵二次函數(shù)的圖象在軸的下方,∴,,解得,,,解得,,∵分式方程有負整數(shù)解,∴,即,∵,∴,∴所有滿足條件的整數(shù)的和為,故答案為:.【點睛】本題考查二次函數(shù)的圖象,解分式方程,分式方程的整數(shù)解,二次函數(shù)的圖象在x軸下方,則開口向下且函數(shù)的最大值小于1,解分式方程時注意分母不為1.15、【分析】利用垂徑定理構(gòu)建直角三角形,然后利用勾股定理即可得解.【詳解】設排水管最低點為C,連接OC交AB于D,連接OB,如圖所示:

∵OC=OB=10,CD=5∴OD=5∵OC⊥AB∴∴故答案為:.【點睛】此題主要考查垂徑定理的實際應用,熟練掌握,即可解題.16、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.17、(2,﹣1)【詳解】解:點P(﹣2,1)關于原點的對稱點P′的坐標是(2,﹣1).故答案為(2,﹣1).【點睛】本題考查了關于原點對稱的點的坐標的特點,注意掌握兩個點關于原點對稱時,它們的坐標符號相反.18、.【分析】過點F作FH⊥AB于點H,證四邊形AGFH是正方形,設AG=x,表示出CG,再證△CFG∽△CBA,根據(jù)相似比求出x即可.【詳解】如圖過點F作FH⊥AB于點H,由作圖知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四邊形AGFH是正方形,設AG=x,則AH=FH=GF=x,∵tan∠C=,∴AC==,則CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案為:.【點睛】本題是對幾何知識的綜合考查,熟練掌握三角函數(shù)及相似知識是解決本題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)PD=.【分析】(1)連接OA,由∠B=60°,利用圓周角定理,即可求得∠AOC的度數(shù),又由OA=OC,即可求得∠OAC與∠OCA的度數(shù),利用三角形外角的性質(zhì),求得∠AOP的度數(shù),又由AP=AC,利用等邊對等角,求得∠P,則可求得∠PAO=90°,則可證得AP是⊙O的切線.(2)由CD是⊙O的直徑,即可得∠DAC=90°,然后利用三角函數(shù)與等腰三角形的判定定理,即可求得PD的長.【詳解】(1)證明:連接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°.∵AP=AC,∴∠P=∠ACP=30°.∴∠OAP=90°.∴OA⊥AP.∴AP是⊙O的切線.(2)解:連接AD.∵CD是⊙O的直徑,∴∠CAD=90°.∴AD=AC?tan30°=3×.∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°.∴∠P=∠PAD.∴PD=AD=.20、(1)1:3;(1)見解析;(3)5:3:1.【分析】(1)根據(jù)平行四邊形的性質(zhì)可得AO=AC,AD=BC,AD∥BC,從而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根據(jù)相似三角形的性質(zhì),即可求出EG:BG的值;(1)根據(jù)相似三角形的性質(zhì)可得GC=3AG,則有AC=4AG,從而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根據(jù)相似三角形的性質(zhì)可得AG=AC,AH=AC,結(jié)合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已證),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.21、(1);(2)將拋物線向左平移個單位,向上平移個單位,解析式變?yōu)椋痉治觥浚?)把已知點的坐標代入拋物線解析式求出b與c的值即可;(2)把函數(shù)化為頂點式,即可得到平移方式與平移后的函數(shù)表達式.【詳解】(1)把(1,0),(0,3)代入拋物線解析式得:,解得:,則拋物線解析式為(2)拋物線將拋物線向左平移個單位,向上平移個單位,解析式變?yōu)椋军c睛】此題考查了二次函數(shù)圖象與幾何變換,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征,以及待定系數(shù)法求二次函數(shù)解析式,熟練掌握二次函數(shù)性質(zhì)是解本題的關鍵.22、(1);(2).【分析】(1)根據(jù)題意連接,利用圓的切線定理和平行四邊形性質(zhì)以及等腰直角三角形性質(zhì)進行綜合分析求解;(2)根據(jù)題意連接,,過點O作于點H,證明是等腰直角三角形,利用三角函數(shù)值進行分析求解即可.【詳解】解:(1)連接,如下圖,∵是圓的切線,∴,,∵四邊形是平行四邊形,∴,,∴,又,∴是等腰直角三角形,∴,∴,∴;(2)連接,,過點O作于點H,如下圖,∵,∴,∵,∴也是等腰直角三角形,∵,∴,∴,∴,∴.【點睛】本題考查圓的綜合問題,熟練掌握切線和平行四邊形的性質(zhì)以及等腰直角三角形性質(zhì)是解題的關鍵.23、(1)1,;(1)y=x+4;(3)x<﹣3或x>1.【分析】(1)將點P(-3,1)代入二次函數(shù)解析式得出3m﹣n=8,然后根據(jù)對稱軸過點(-1,0)得出對稱軸為x=-1,據(jù)此求出m的值,然后進一步求出n的值即可;(1)根據(jù)一次函數(shù)經(jīng)過點P(﹣3,1),得出1=﹣3k+b,且點B與點M(﹣4,6)關于x=﹣1對稱,所以B(1,6),所以6=1k+b,最后求出k與b的值即可;(3)y1>y1,則說明y1的函數(shù)圖像在y1函數(shù)圖像上方,據(jù)此根據(jù)圖像直接寫出范圍即可.【詳解】(1)由二次函數(shù)經(jīng)過點P(﹣3,1),∴1=9﹣3m+n,∴3m﹣n=8,又∵對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線,∴對稱軸為x=﹣1,∴﹣=﹣1,∴m=1,∴n=﹣1;(1)∵一次函數(shù)經(jīng)過點P(﹣3,1),∴1=﹣3k+b,∵點B與點M(﹣4,6)關于x=﹣1對稱,∴B(1,6),∴6=1k+b,∴k=1,b=4,∴一次函數(shù)解析式為y=x+4;(3)由圖象可知,x<﹣3或x>1時,y1>y1.【點睛】本題主要考查了二次函數(shù)的綜合運用,熟練掌握相關概念是解題關鍵.24、2.6cm【分析】先要過D作出垂線段DE,根據(jù)角平分線的性質(zhì)求出CD=DE,再根據(jù)已知即可求得D到AB的距離的大小.【詳解】解:過點D作DE⊥

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論