版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.用配方法解一元二次方程時(shí),此方程可變形為()A. B. C. D.2.關(guān)于的方程有實(shí)數(shù)根,則滿(mǎn)足()A. B.且 C.且 D.3.如圖,⊙O的弦CD與直徑AB交于點(diǎn)P,PB=1cm,AP=5cm,∠APC=30°,則弦CD的長(zhǎng)為()A.4cm B.5cm C.cm D.cm4.如圖,是半圓的直徑,點(diǎn)在的延長(zhǎng)線上,切半圓于點(diǎn),連接.若,則的度數(shù)為()A. B. C. D.5.已知點(diǎn)A(﹣3,a),B(﹣2,b),C(1,c)均在拋物線y=3(x+2)2+k上,則a,b,c的大小關(guān)系是()A.c<a<b B.a(chǎn)<c<b C.b<a<c D.b<c<a6.下列各式中,均不為,和成反比例關(guān)系的是()A. B. C. D.7.為了讓人們感受丟棄塑料袋對(duì)環(huán)境造成的影響,某班環(huán)保小組的6名同學(xué)記錄了自己家中一周內(nèi)丟棄塑料袋的數(shù)量,結(jié)果如下:(單位:個(gè))33,25,28,26,25,31,如果該班有45名學(xué)生,那么根據(jù)提供的數(shù)據(jù)估計(jì)本周全班同學(xué)各家總共丟棄塑料袋的數(shù)量為()A.900個(gè) B.1080個(gè) C.1260個(gè) D.1800個(gè)8.如圖,在?APBC中,∠C=40°,若⊙O與PA、PB相切于點(diǎn)A、B,則∠CAB=()A.40° B.50° C.60° D.70°9.如圖,一個(gè)正六邊形轉(zhuǎn)盤(pán)被分成6個(gè)全等三角形,任意轉(zhuǎn)動(dòng)這個(gè)轉(zhuǎn)盤(pán)1次,當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針指向陰影區(qū)域的概率是()A. B. C. D.10.已知關(guān)于x的一元二次方程xaxb0ab的兩個(gè)根為x1、x2,x1x2則實(shí)數(shù)a、b、x1、x2的大小關(guān)系為()A.a(chǎn)x1bx2 B.a(chǎn)x1x2b C.x1ax2b D.x1abx211.一條排水管的截面如圖所示,已知排水管的半徑,水面寬,則截面圓心到水面的距離是()
A.3 B.4 C. D.812.如圖,平行于x軸的直線與函數(shù)y=(k1>0,x>0),y=(k2>0,x>0)的圖象分別相交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的右側(cè),C為x軸上的一個(gè)動(dòng)點(diǎn),若△ABC的面積為6,則k1﹣k2的值為()A.12 B.﹣12 C.6 D.﹣6二、填空題(每題4分,共24分)13.如圖,在平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(2,4),將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對(duì)應(yīng)點(diǎn)C恰好落在反比例函數(shù)y=的圖象上,則k的值為_(kāi)____.14.已知學(xué)校航模組設(shè)計(jì)制作的火箭的升空高度h(m)與飛行時(shí)間t(s)滿(mǎn)足函數(shù)表達(dá)式,則火箭升空的最大高度是___m15.如圖,直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P是x軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線AB相切時(shí),點(diǎn)P的橫坐標(biāo)是_____16.如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長(zhǎng)度是________.17.如果函數(shù)是關(guān)于的二次函數(shù),則__________.18.如圖,在正方形ABCD的外側(cè),作等邊△ABE,則∠BFC=_________°三、解答題(共78分)19.(8分)如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.(1)請(qǐng)完成如下操作:①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD.(2)請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列填空:①寫(xiě)出點(diǎn)的坐標(biāo):C;D();②⊙D的半徑=(結(jié)果保留根號(hào));③若扇形ADC是一個(gè)圓錐的側(cè)面展開(kāi)圖,則該圓錐的底面的面積為;(結(jié)果保留π)④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說(shuō)明你的理由.20.(8分)如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB).且OA、OB的長(zhǎng)分別是一元二次方程x2﹣14x+48=0的兩個(gè)根,線段AB的垂直平分線CD交AB于點(diǎn)C,交x軸于點(diǎn)D,點(diǎn)P是直線AB上一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線CD上一個(gè)動(dòng)點(diǎn).(1)求線段AB的長(zhǎng)度:(2)過(guò)動(dòng)點(diǎn)P作PF⊥OA于F,PE⊥OB于E,點(diǎn)P在移動(dòng)過(guò)程中,線段EF的長(zhǎng)度也在改變,請(qǐng)求出線段EF的最小值:(3)在坐標(biāo)平面內(nèi)是否存在一點(diǎn)M,使以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是正方形,且該正方形的邊長(zhǎng)為AB長(zhǎng)?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.21.(8分)寒冬來(lái)臨,豆絲飄香,豆絲是鄂州民間傳統(tǒng)美食;某企業(yè)接到一批豆絲生產(chǎn)任務(wù),約定這批豆絲的出廠價(jià)為每千克4元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,新工人李明第1天生產(chǎn)100千克豆絲,由于不斷熟練,以后每天都比前一天多生產(chǎn)20千克豆絲;設(shè)李明第x天(,且x為整數(shù))生產(chǎn)y千克豆絲,解答下列問(wèn)題:(1)求y與x的關(guān)系式,并求出李明第幾天生產(chǎn)豆絲280千克?(2)設(shè)第x天生產(chǎn)的每千克豆絲的成本是p元,p與x之間滿(mǎn)足如圖所示的函數(shù)關(guān)系;若李明第x天創(chuàng)造的利潤(rùn)為w元,求w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=出廠價(jià)-成本)22.(10分)已知正比例函數(shù)y=-3x與反比例函數(shù)y=交于點(diǎn)P(-1,n),求反比例函數(shù)的表達(dá)式23.(10分)二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過(guò)點(diǎn)A(1,);點(diǎn)F(0,1)在y軸上.直線y=﹣1與y軸交于點(diǎn)H.(1)求二次函數(shù)的解析式;(2)點(diǎn)P是(1)中圖象上的點(diǎn),過(guò)點(diǎn)P作x軸的垂線與直線y=﹣1交于點(diǎn)M,求證:FM平分∠OFP;(3)當(dāng)△FPM是等邊三角形時(shí),求P點(diǎn)的坐標(biāo).24.(10分)如圖,AB為半圓O的直徑,點(diǎn)C在半圓上,過(guò)點(diǎn)O作BC的平行線交AC于點(diǎn)E,交過(guò)點(diǎn)A的直線于點(diǎn)D,且∠D=∠BAC(1)求證:AD是半圓O的切線;(2)求證:△ABC∽△DOA;(3)若BC=2,CE=,求AD的長(zhǎng).25.(12分)如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點(diǎn)D.連接AD,BD.求四邊形ABCD的面積.26.定義:有兩個(gè)相鄰內(nèi)角和等于另兩個(gè)內(nèi)角和的一半的四邊形稱(chēng)為半四邊形,這兩個(gè)角的夾邊稱(chēng)為對(duì)半線.(1)如圖1,在對(duì)半四邊形中,,求與的度數(shù)之和;(2)如圖2,為銳角的外心,過(guò)點(diǎn)的直線交,于點(diǎn),,,求證:四邊形是對(duì)半四邊形;(3)如圖3,在中,,分別是,上一點(diǎn),,,為的中點(diǎn),,當(dāng)為對(duì)半四邊形的對(duì)半線時(shí),求的長(zhǎng).
參考答案一、選擇題(每題4分,共48分)1、D【解析】試題解析:故選D.2、A【分析】分類(lèi)討論:當(dāng)a=5時(shí),原方程變形一元一次方程,有一個(gè)實(shí)數(shù)解;當(dāng)a≠5時(shí),根據(jù)判別式的意義得到a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,然后綜合兩種情況即可得到滿(mǎn)足條件的a的范圍.【詳解】當(dāng)a=5時(shí),原方程變形為-4x-1=0,解得x=-;當(dāng)a≠5時(shí),△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,所以a的取值范圍為a≥1.故選A.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.也考查了一元二次方程的定義.3、D【分析】作OH⊥CD于H,連接OC,如圖,先計(jì)算出OB=3,OP=2,再在Rt△OPH中利用含30度的直角三角形三邊的關(guān)系得到OH=1,則可根據(jù)勾股定理計(jì)算出CH,然后根據(jù)垂徑定理得到CH=DH,從而得到CD的長(zhǎng).【詳解】解:作OH⊥CD于H,連接OC,如圖,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=OP=1,在Rt△OCH中,CH=,∵OH⊥CD,∴CH=DH=,∴CD=2CH=.故選:D.【點(diǎn)睛】本題考查了含30度角的直角三角形的性質(zhì)、勾股定理以及垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧.4、D【分析】根據(jù)題意,連接OC,由切線的性質(zhì)可知,再由圓周角定理即可得解.【詳解】依題意,如下圖,連接OC,∵切半圓于點(diǎn),∴OC⊥CP,即∠OCP=90°,∵,∴,∴,故選:D.【點(diǎn)睛】本題主要考查了切線的性質(zhì)及圓周角定理,熟練掌握相關(guān)知識(shí)是解決本題的關(guān)鍵.5、C【分析】通過(guò)確定A、B、C三個(gè)點(diǎn)和函數(shù)對(duì)稱(chēng)軸的距離,確定對(duì)應(yīng)y軸的大小.【詳解】解:函數(shù)的對(duì)稱(chēng)軸為:x=﹣2,a=3>0,故開(kāi)口向上,x=1比x=﹣3離對(duì)稱(chēng)軸遠(yuǎn),故c最大,b為函數(shù)最小值,故選:C.【點(diǎn)睛】本題主要考查了二次函數(shù)的性質(zhì),能根據(jù)題意,巧妙地利用性質(zhì)進(jìn)行解題是解此題的關(guān)鍵6、B【分析】判斷兩個(gè)相關(guān)聯(lián)的量之間成什么比例,就看這兩個(gè)量是對(duì)應(yīng)的比值一定,還是對(duì)應(yīng)的乘積一定;如果是比值一定,就成正比例;如果是乘積一定,則成反比例.【詳解】解:A.,則,x和y不成比例;B.,即7yx=5,是比值一定,x和y成反比例;C.,x和y不成比例;D.,即y:x=5:8,是比值一定,x和y成正比例.故選B.【點(diǎn)睛】此題屬于根據(jù)正、反比例的意義,辨識(shí)兩種相關(guān)聯(lián)的量是否成反比例,就看這兩種量是否是對(duì)應(yīng)的乘積一定,再做出選擇.7、C【分析】先求出6名同學(xué)家丟棄塑料袋的平均數(shù)量作為全班學(xué)生家的平均數(shù)量,然后乘以總?cè)藬?shù)45即可解答.【詳解】估計(jì)本周全班同學(xué)各家總共丟棄塑料袋的數(shù)量為(個(gè)).【點(diǎn)睛】本題考查了用樣本估計(jì)總體的問(wèn)題,掌握算術(shù)平均數(shù)的公式是解題的關(guān)鍵.8、D【分析】根據(jù)切線長(zhǎng)定理得出四邊形APBC是菱形,再根據(jù)菱形的性質(zhì)即可求解.【詳解】解:∵⊙O與PA、PB相切于點(diǎn)A、B,∴PA=PB∵四邊形APBC是平行四邊形,∴四邊形APBC是菱形,∴∠P=∠C=40°,∠PAC=140°∴∠CAB=∠PAC=70°故選D.【點(diǎn)睛】此題主要考查圓的切線長(zhǎng)定理,解題的關(guān)鍵是熟知菱形的判定與性質(zhì).9、C【解析】試題分析:轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)被均勻分成6部分,陰影部分占2份,轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí)指針指向陰影部分的概率是=;故選C.考點(diǎn):幾何概率.10、D【分析】根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】如圖,設(shè)函數(shù)y=(x?a)(x?b),當(dāng)y=0時(shí),x=a或x=b,當(dāng)y=時(shí),由題意可知:(x?a)(x?b)?=0(a<b)的兩個(gè)根為x1、x2,由于拋物線開(kāi)口向上,由拋物線的圖象可知:x1<a<b<x2故選:D.【點(diǎn)睛】本題考查一元二次方程,解題的關(guān)鍵是正確理解一元二次方程與二次函數(shù)之間的關(guān)系,本題屬于中等題型.11、D【分析】根據(jù)垂徑定理,OC⊥AB,故OC平分AB,由AB=12,得出BC=6,再結(jié)合已知條件和勾股定理,求出OC即可.【詳解】解:∵OC⊥AB,AB=12∴BC=6∵∴OC=故選D.【點(diǎn)睛】本題主要考查了垂徑定理以及勾股定理,能夠熟悉定理以及準(zhǔn)確的運(yùn)算是解決本題的關(guān)鍵.12、A【分析】△ABC的面積=?AB?yA,先設(shè)A、B兩點(diǎn)坐標(biāo)(其y坐標(biāo)相同),然后計(jì)算相應(yīng)線段長(zhǎng)度,用面積公式即可求解.【詳解】解:設(shè):A、B點(diǎn)的坐標(biāo)分別是A(,m)、B(,m),則:△ABC的面積=?AB?yA=?(﹣)?m=6,則k1﹣k2=1.故選:A.【點(diǎn)睛】此題主要考查了反比例函數(shù)系數(shù)的幾何意義,以及圖象上點(diǎn)的特點(diǎn),求解函數(shù)問(wèn)題的關(guān)鍵是要確定相應(yīng)點(diǎn)坐標(biāo),通過(guò)設(shè)、兩點(diǎn)坐標(biāo),表示出相應(yīng)線段長(zhǎng)度即可求解問(wèn)題.二、填空題(每題4分,共24分)13、1【解析】根據(jù)題意和旋轉(zhuǎn)的性質(zhì),可以得到點(diǎn)C的坐標(biāo),把點(diǎn)C坐標(biāo)代入反比例函數(shù)y=中,即可求出k的值.【詳解】∵OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(2,4),∴OB=2,AB=4∵將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,∴AD=4,CD=2,且AD//x軸∴點(diǎn)C的坐標(biāo)為(6,2),∵點(diǎn)O的對(duì)應(yīng)點(diǎn)C恰好落在反比例函數(shù)y=的圖象上,
∴k=2,故答案為1.【點(diǎn)睛】本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、坐標(biāo)與圖形的變化-旋轉(zhuǎn),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.14、1【分析】將函數(shù)解析式配方,寫(xiě)成頂點(diǎn)式,按照二次函數(shù)的性質(zhì)可得答案.【詳解】解:∵==,∵,∴拋物線開(kāi)口向下,當(dāng)x=6時(shí),h取得最大值,火箭能達(dá)到最大高度為1m.故答案為:1.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,熟練掌握配方法及二次函數(shù)的性質(zhì),是解題的關(guān)鍵.15、【分析】根據(jù)函數(shù)解析式求得A(3,1),B(1,-3),得到OA=3,OB=3根據(jù)勾股定理得到AB=6,設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=2,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】∵直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,
∴令x=1,得y=-3,令y=1,得x=3,
∴A(3,1),B(1.-3),
∴OA=3,OB=3,
∴AB=6,
設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=1,
∵∠ADP=∠AOB=91°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP=2,
∴OP=3-2或OP=3+2,
∴P(3-2,1)或P(3+2,1),
故答案為:.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),一次函數(shù)圖形上點(diǎn)的坐標(biāo)特征,相似三角形的判定和性質(zhì),正確的理解題意并進(jìn)行分類(lèi)討論是解題的關(guān)鍵.16、【解析】試題分析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等邊三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等邊三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D=考點(diǎn):旋轉(zhuǎn)的性質(zhì).17、1【分析】根據(jù)二次函數(shù)的定義得到且,然后解不等式和方程即可得到的值.【詳解】∵函數(shù)是關(guān)于的二次函數(shù),
∴且,解方程得:或(舍去),
∴.
故答案為:1.【點(diǎn)睛】本題考查二次函數(shù)的定義,關(guān)鍵是掌握二次函數(shù)的定義:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù).18、1【解析】根據(jù)正方形的性質(zhì)及等邊三角形的性質(zhì)求出∠ADE=15°,∠DAC=45°,再求∠DFC,證△DCF?△BCF,可得∠BFC=∠DFC.【詳解】∵四邊形ABCD是正方形,
∴AB=AD=CD=BC,∠DCF=∠BCF=45°
又∵△ABE是等邊三角形,
∴AE=AB=BE,∠BAE=1°
∴AD=AE
∴∠ADE=∠AED,∠DAE=90°+1°=150°
∴∠ADE=(180°-150°)÷2=15°
又∵∠DAC=45°
∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF?△BCF∴∠BFC=∠DFC=1°
故答案為:1.【點(diǎn)睛】本題主要是考查了正方形的性質(zhì)和等邊三角形的性質(zhì),本題的關(guān)鍵是求出∠ADE=15°.三、解答題(共78分)19、(1)①答案見(jiàn)解析;②答案見(jiàn)解析;(2)①C(6,2);D(2,0);②;③;④相切,理由見(jiàn)解析.【分析】(1)①按題目的要求作圖即可②根據(jù)圓心到A、B、C距離相等即可得出D點(diǎn)位置;(2)①C(6,2),弦AB,BC的垂直平分線的交點(diǎn)得出D(2,0);
②OA,OD長(zhǎng)已知,△OAD中勾股定理求出⊙D的半徑=2;
③求出∠ADC的度數(shù),得弧ADC的周長(zhǎng),求出圓錐的底面半徑,再求圓錐的底面的面積;
④△CDE中根據(jù)勾股定理的逆定理得∠DCE=90°,直線EC與⊙D相切.【詳解】(1)①②如圖所示:(2)①故答案為:C(6,2);D(2,0);②⊙D的半徑=;故答案為:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧長(zhǎng)=圓錐的底面的半徑=,圓錐的底面的面積為π()2=;故答案為:;
(4)直線EC與⊙D相切.
證明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直線EC與⊙D相切.【點(diǎn)睛】本題綜合考查了圖形的性質(zhì)和坐標(biāo)的確定,是綜合性較強(qiáng),難度較大的綜合題,圓的圓心D是關(guān)鍵.20、(1)1;(2);(3)存在,所求點(diǎn)M的坐標(biāo)為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,可得到A、B兩點(diǎn)的坐標(biāo),在Rt△AOB中利用勾股定理求出AB即可.(2)證明四邊形PEOF是矩形,推出EF=OP,根據(jù)垂線段最短解決問(wèn)題即可.(3)分兩種情況進(jìn)行討論:①當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),先求出BM的解析式為y=x+8,設(shè)M(x,x+8),再根據(jù)BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐標(biāo);②當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),先求出AM的解析式為y=x﹣,設(shè)M(x,x﹣),再根據(jù)AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐標(biāo).【詳解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===1.(2)如圖,連接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四邊形PEOF是矩形,∴EF=OP,根據(jù)垂線段最短可知當(dāng)OP⊥AB時(shí),OP的值最小,此時(shí)OP==,∴EF的最小值為.(3)在坐標(biāo)平面內(nèi)存在點(diǎn)M,使以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是正方形,且該正方形的邊長(zhǎng)為AB長(zhǎng).∵AC=BC=AB=5,∴以點(diǎn)C、P、Q、M為頂點(diǎn)的正方形的邊長(zhǎng)為5,且點(diǎn)P與點(diǎn)B或點(diǎn)A重合.分兩種情況:①當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),易求BM的解析式為y=x+8,設(shè)M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化簡(jiǎn)整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),易求AM的解析式為y=x﹣,設(shè)M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化簡(jiǎn)整理,得x2﹣12x+20=0,解得x1=2,x2=1,∴M3(2,﹣3),M4(1,3);綜上所述,所求點(diǎn)M的坐標(biāo)為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【點(diǎn)睛】本題是一次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn)有運(yùn)用待定系數(shù)法求一次函數(shù)的解析式,一元二次方程的解法,正方形的性質(zhì),綜合性較強(qiáng),難度適中.運(yùn)用數(shù)形結(jié)合、分類(lèi)討論及方程思想是解題的關(guān)鍵.21、(1),第10天生產(chǎn)豆絲280千克;(2)當(dāng)x=13時(shí),w有最大值,最大值為1.【分析】(1)根據(jù)題意可得關(guān)系式為:y=20x+80,把y=280代入y=20x+80,解方程即可求得;
(2)根據(jù)圖象求得成本p與x之間的關(guān)系,然后根據(jù)利潤(rùn)等于訂購(gòu)價(jià)減去成本價(jià),然后整理即可得到W與x的關(guān)系式,再根據(jù)一次函數(shù)的增減性和二次函數(shù)的增減性解答;【詳解】解:(1)依題意得:令,則,解得答:第10天生產(chǎn)豆絲280千克.(2)由圖象得,當(dāng)0<x<10時(shí),p=2;當(dāng)10≤x≤20時(shí),設(shè)P=kx+b,把點(diǎn)(10,2),(20,3)代入得,解得∴p=0.1x+1,①1≤x≤10時(shí),w=(4-2)×(20x+80)=40x+160,∵x是整數(shù),∴當(dāng)x=10時(shí),w最大=560(元);②10<x≤20時(shí),w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,=-2(x-13)2+1,∵a=-2<0,∴當(dāng)x=-=13時(shí),w最大=1(元)綜上,當(dāng)x=13時(shí),w有最大值,最大值為1.【點(diǎn)睛】本題考查的是二次函數(shù)在實(shí)際生活中的應(yīng)用,主要是利用二次函數(shù)的增減性求最值問(wèn)題,利用一次函數(shù)的增減性求最值,難點(diǎn)在于讀懂題目信息,列出相關(guān)的函數(shù)關(guān)系式.22、.【分析】將點(diǎn)P的坐標(biāo)代入正比例函數(shù)y=-3x中,即可求出n的值,然后將P點(diǎn)坐標(biāo)代入反比例函數(shù)y=中,即可求出反比例函數(shù)的表達(dá)式.【詳解】解:將點(diǎn)P的坐標(biāo)代入正比例函數(shù)y=-3x中,得n=-3×(-1)=3,故P點(diǎn)坐標(biāo)為(-1,3)將點(diǎn)P(-1,3)代入反比例函數(shù)y=中,得3=解得:m=2故反比例函數(shù)的解析式為:【點(diǎn)睛】此題考查的是求反比例函數(shù)的解析式,掌握用待定系數(shù)法求反比例函數(shù)的解析式是解決此題的關(guān)鍵.23、(1)y=x2;(2)證明見(jiàn)解析;(3)(,3)或(﹣,3).【解析】試題分析:(1)根據(jù)題意可設(shè)函數(shù)的解析式為y=ax2,將點(diǎn)A代入函數(shù)解析式,求出a的值,繼而可求得二次函數(shù)的解析式;(2)過(guò)點(diǎn)P作PB⊥y軸于點(diǎn)B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,結(jié)合平行線的性質(zhì),可得出結(jié)論;(3)首先可得∠FMH=30°,設(shè)點(diǎn)P的坐標(biāo)為(x,x2),根據(jù)PF=PM=FM,可得關(guān)于x的方程,求出x的值即可得出答案.試題解析:(1)∵二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,∴設(shè)二次函數(shù)的解析式為y=ax2,將點(diǎn)A(1,)代入y=ax2得:a=,∴二次函數(shù)的解析式為y=x2;(2)∵點(diǎn)P在拋物線y=x2上,∴可設(shè)點(diǎn)P的坐標(biāo)為(x,x2),過(guò)點(diǎn)P作PB⊥y軸于點(diǎn)B,則BF=|x2﹣1|,PB=|x|,∴Rt△BPF中,PF==x2+1,∵PM⊥直線y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥y軸,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)當(dāng)△FPM是等邊三角形時(shí),∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴滿(mǎn)足條件的點(diǎn)P的坐標(biāo)為(2,3)或(﹣2,3).【考點(diǎn)】二次函數(shù)綜合題.24、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)【分析】(1)要證AD是半圓O的切線只要證明∠DAO=90°即可;(2)根據(jù)兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似即可得證;(3)先求出AC、AB、AO的長(zhǎng),由第(2)問(wèn)的結(jié)論△ABC∽△DOA,根據(jù)相似三角形的性質(zhì):對(duì)應(yīng)邊成比例可得到AD的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海辦公室裝修合作合同版B版
- 2《長(zhǎng)征勝利萬(wàn)歲》《大戰(zhàn)中的插曲》聯(lián)讀說(shuō)課稿 2024-2025學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)
- 2025新春春節(jié)后企業(yè)復(fù)工環(huán)境保護(hù)合同3篇
- 專(zhuān)屬2024跨境貿(mào)易報(bào)關(guān)業(yè)務(wù)協(xié)議版A版
- 專(zhuān)業(yè)隔離房間分包工程2024協(xié)議模板版A版
- 個(gè)人物品運(yùn)輸協(xié)議:2024年合規(guī)樣本版B版
- 2024正規(guī)商鋪買(mǎi)賣(mài)合同附件清單及交接事宜協(xié)議2篇
- 廣東省高校畢業(yè)生求職創(chuàng)業(yè)補(bǔ)貼申請(qǐng)表
- 福建省南平市武夷山第二中學(xué)2021年高三英語(yǔ)下學(xué)期期末試題含解析
- 福建省南平市文化武術(shù)學(xué)校2020-2021學(xué)年高一數(shù)學(xué)文聯(lián)考試題含解析
- Unit3 Sports and fitness Discovering Useful Structures 說(shuō)課稿-2024-2025學(xué)年高中英語(yǔ)人教版(2019)必修第一冊(cè)
- NB/T 11536-2024煤礦帶壓開(kāi)采底板井下注漿加固改造技術(shù)規(guī)范
- 2024年九年級(jí)上德育工作總結(jié)
- 《組織與胚胎學(xué)》課程期末考試復(fù)習(xí)題庫(kù)及答案
- (八省聯(lián)考)河南省2025年高考綜合改革適應(yīng)性演練 化學(xué)試卷(含答案)
- 2024年儲(chǔ)罐呼吸閥項(xiàng)目可行性研究報(bào)告
- 控制特需醫(yī)療服務(wù)規(guī)模管理措施
- 部編版三年級(jí)上冊(cè)道德與法治期末測(cè)試卷帶答案(鞏固)
- 《生物安全培訓(xùn)》課件-2024鮮版
- 管片生產(chǎn)安全技術(shù)交底
- Q∕GDW 13123.1-2018 110kV變壓器保護(hù)采購(gòu)標(biāo)準(zhǔn) 第1部分:通用技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論