2022-2023學年山西省靜樂縣第一中學高三下學期聯(lián)合考試數(shù)學試題含解析_第1頁
2022-2023學年山西省靜樂縣第一中學高三下學期聯(lián)合考試數(shù)學試題含解析_第2頁
2022-2023學年山西省靜樂縣第一中學高三下學期聯(lián)合考試數(shù)學試題含解析_第3頁
2022-2023學年山西省靜樂縣第一中學高三下學期聯(lián)合考試數(shù)學試題含解析_第4頁
2022-2023學年山西省靜樂縣第一中學高三下學期聯(lián)合考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.2.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.3.是虛數(shù)單位,復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.5.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.6.已知滿足,則的取值范圍為()A. B. C. D.7.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.5788.已知實數(shù)滿足約束條件,則的最小值是A. B. C.1 D.49.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.10.已知定義在上函數(shù)的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.67411.函數(shù)的圖象可能是()A. B. C. D.12.用數(shù)學歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+1二、填空題:本題共4小題,每小題5分,共20分。13.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________14.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.15.已知函數(shù),若,則___________.16.已知函數(shù)與的圖象上存在關于軸對稱的點,則的取值范圍為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.18.(12分)已知函數(shù).(1)當時,求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點,求實數(shù)的取值范圍.19.(12分)已知函數(shù).(1)若在上是減函數(shù),求實數(shù)的最大值;(2)若,求證:.20.(12分)某地為改善旅游環(huán)境進行景點改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M

),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1

(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當?shù)钠矫嬷苯亲鴺讼担⑶髼5繟B的方程;(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標系中,寫出觀測點P的坐標.21.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大?。?)已知,設點是外一點,且,求平面四邊形面積的最大值.22.(10分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進行求解即可.【詳解】當時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導數(shù)的應用,屬于中檔題.2、D【解析】

根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.3、D【解析】

求出復數(shù)在復平面內(nèi)對應的點的坐標,即可得出結(jié)論.【詳解】復數(shù)在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數(shù)對應的點的位置的判斷,屬于基礎題.4、C【解析】

以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應用,屬于中檔題.5、B【解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的應用,試題有一定的技巧,屬于中檔試題,解決這類問題的關鍵在于熟練掌握等比數(shù)列的有關公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程.6、C【解析】

設,則的幾何意義為點到點的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區(qū)域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標函數(shù)函數(shù)問題,解題時作出可行域,利用目標函數(shù)的幾何意義求解是解題關鍵.對于直線斜率要注意斜率不存在的直線是否存在.7、D【解析】

因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復出現(xiàn)的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.【點睛】本題考查了隨機數(shù)表表的應用,正確掌握隨機數(shù)表法的使用方法是解題的關鍵.8、B【解析】

作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設,則,易知當直線經(jīng)過點時,z取得最小值,由,解得,所以,所以,故選B.9、A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關系,兩角和的正弦公式與誘導公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.10、B【解析】

由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.11、A【解析】

先判斷函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項.【詳解】函數(shù)的定義域為,,該函數(shù)為偶函數(shù),排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式辨別函數(shù)的圖象,一般分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,結(jié)合排除法得出結(jié)果,考查分析問題和解決問題的能力,屬于中等題.12、C【解析】

首先分析題目求用數(shù)學歸納法證明1+1+3+…+n1=n4【詳解】當n=k時,等式左端=1+1+…+k1,當n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數(shù)學歸納法,屬于中檔題./二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意畫出圖形,設,利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設,由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關系的應用,以及三角形相似的應用,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎題.14、【解析】

求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.15、【解析】

根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因為函數(shù),其定義域為,所以其定義域關于原點對稱,又,所以函數(shù)為奇函數(shù),因為,所以.故答案為:【點睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關鍵;屬于中檔題、常考題型.16、【解析】

兩函數(shù)圖象上存在關于軸對稱的點的等價命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構(gòu)造函數(shù),求導,求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關于軸對稱的點,則方程在區(qū)間上有解,即方程在區(qū)間上有解,設函數(shù),其導數(shù),又由,可得:當時,為減函數(shù),當時,為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域為;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題,函數(shù)零點問題的拓展.由于函數(shù)的零點就是方程的根,在研究方程的有關問題時,可以將方程問題轉(zhuǎn)化為函數(shù)問題解決.此類問題的切入點是借助函數(shù)的零點,結(jié)合函數(shù)的圖象,采用數(shù)形結(jié)合思想加以解決.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由直線可得橢圓右焦點的坐標為,由中點可得,且由斜率公式可得,由點在橢圓上,則,二者作差,進而代入整理可得,即可求解;(2)設直線,點到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長公式求得,利用點到直線距離求得,根據(jù)直線l與線段AB(不含端點)相交,可得,即,進而整理換元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線與x軸交于點,所以橢圓右焦點的坐標為,故,因為線段AB的中點是,設,則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設直線,代入,得,解得或,設,則,則,因為到直線的距離分別是,由于直線l與線段AB(不含端點)相交,所以,即,所以,四邊形的面積,令,,則,所以,當,即時,,因此四邊形面積的最大值為.【點睛】本題考查求橢圓的標準方程,考查橢圓中的四邊形面積問題,考查直線與橢圓的位置關系的應用,考查運算能力.18、(1).(2)【解析】

(1)利用導數(shù)的幾何意義求解即可;(2)利用導數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題,由圖,即可得出實數(shù)的取值范圍.【詳解】(1)當時,,∴切線斜率,又切點∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.【點睛】本題主要考查了導數(shù)的幾何意義的應用,利用導數(shù)研究函數(shù)的零點問題,屬于中檔題.19、(1)(2)詳見解析【解析】

(1),在上,因為是減函數(shù),所以恒成立,即恒成立,只需.令,,則,因為,所以.所以在上是增函數(shù),所以,所以,解得.所以實數(shù)的最大值為.(2),.令,則,根據(jù)題意知,所以在上是增函數(shù).又因為,當從正方向趨近于0時,趨近于,趨近于1,所以,所以存在,使,即,,所以對任意,,即,所以在上是減函數(shù);對任意,,即,所以在上是增函數(shù),所以當時,取得最小值,最小值為.由于,,則,當且僅當,即時取等號,所以當時,.20、(1)見解析,,x[0,1];(2)P(,)時,視角∠EPF最大.【解析】

(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系,設出方程,通過點的坐標可求方程;(2)設出的坐標,表示出,利用基本不等式求解的最大值,從而可得觀測點P的坐標.【詳解】(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論