第01章08節(jié)支路電流分析法法_第1頁(yè)
第01章08節(jié)支路電流分析法法_第2頁(yè)
第01章08節(jié)支路電流分析法法_第3頁(yè)
第01章08節(jié)支路電流分析法法_第4頁(yè)
第01章08節(jié)支路電流分析法法_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

目的:找出一般(對(duì)任何線性電路均適用)的求解線性網(wǎng)絡(luò)的系統(tǒng)方法。對(duì)象:含獨(dú)立源、受控源的電阻網(wǎng)絡(luò)的直流穩(wěn)態(tài)解。應(yīng)用:主要用于復(fù)雜的線性電路的求解。兩類約束元件特性約束(對(duì)電阻電路,即歐姆定律)拓?fù)浣Y(jié)構(gòu)約束—KCL,KVL相互獨(dú)立基礎(chǔ):支路電流(電壓)法回路電流法節(jié)點(diǎn)電壓法割集分析法線性網(wǎng)絡(luò):由線性元件或獨(dú)立源(屬非線性)構(gòu)成的電路。與拓?fù)浣Y(jié)構(gòu)無(wú)關(guān)與元件種類無(wú)關(guān)1.8支路電流法(branchcurrentmethod)n個(gè)節(jié)點(diǎn)、b條支路的電路:支路電流:b個(gè)支路電壓:b個(gè)需2b個(gè)獨(dú)立的電路方程例:R1R2R3R4R5R6+–i2i3i4i1i5i6uS1234b=6n=4獨(dú)立方程數(shù)應(yīng)為2b=12個(gè)。支路電流法:以各支路電流為未知量列寫電路方程分析電路的方法。R1R2R3R4R5R6+–i2i3i4i1i5i6uS1234標(biāo)定各支路電流、電壓的參考方向并列寫各支路特性方程u1=R1i1,u2=R2i2,u3=R3i3,u4=R4i4,u5=R5i5,u6=–uS+R6i6(1)(b=6,6個(gè)方程,關(guān)聯(lián)參考方向)(2)對(duì)節(jié)點(diǎn),根據(jù)KCL列方程節(jié)點(diǎn)1:i1+i2–i6=0節(jié)點(diǎn)2:–i2+i3+i4=0節(jié)點(diǎn)3:–i4–i5+i6=0節(jié)點(diǎn)4:–i1–i3+i5=0(2)獨(dú)立KCL方程數(shù)為n–1=4–1=3個(gè)(設(shè)流出節(jié)點(diǎn)為正,流入節(jié)點(diǎn)為負(fù))u6u2u3u4u5-u1+--+++-+-+-(關(guān)聯(lián))對(duì)有n個(gè)節(jié)點(diǎn)的電路,就有n個(gè)KCL方程,但獨(dú)立KCL方程數(shù)最多為(n–1)個(gè)。一般情況:獨(dú)立節(jié)點(diǎn):與獨(dú)立KCL方程對(duì)應(yīng)的節(jié)點(diǎn)。任選(n–1)個(gè)節(jié)點(diǎn)即為獨(dú)立節(jié)點(diǎn)。對(duì)上例,尚缺2b-b-(n-1)=b-(n-1)=6-(4-1)=3個(gè)獨(dú)立方程??捎蒏VL,對(duì)回路列支路電壓方程得到。3R1R2R3R4R5R6+–i2i3i4i1i5i6uS1234(3)選定圖示的3個(gè)回路,由KVL,列寫關(guān)于支路電壓的方程?;芈?:–u1+u2+u3=0回路2:–u3+u4–u5=0回路3:u1+u5+u6=0(3)可以檢驗(yàn),式(3)的3個(gè)方程是獨(dú)立的,即所選的回路是獨(dú)立的。獨(dú)立回路:獨(dú)立KVL方程所對(duì)應(yīng)的回路。12i1+i2–i6=0–i2+i3+i4=0–i4–i5+i6=0–R1i1+R2i2+R3i3=0–R3i3+R4i4–R5i5=0

R1i1+R5i5+R6i6–uS=0KCLKVLR1R2R3R4R5R6+–i2i3i4i1i5i6uS3123412綜合式(1)、(2)和(3),便得到所需的6+3+3=12=2b個(gè)獨(dú)立方程。將式(1)的6個(gè)支路VAR代入三個(gè)KVL方程,消去6個(gè)支路電壓,保留支路電流,便得到關(guān)于支路電流的方程如下:獨(dú)立回路的選取:每增選一個(gè)回路使這個(gè)回路至少具有一條新支路。因這樣所建立的方程不可能由原來(lái)方程導(dǎo)出,所以,肯定是獨(dú)立的(充分條件)??梢宰C明:用KVL只能列出b–(n–1)個(gè)獨(dú)立回路電壓方程。對(duì)平面電路,b–(n–1)個(gè)網(wǎng)孔即是一組獨(dú)立回路。53241平面電路。支路數(shù)b=12節(jié)點(diǎn)數(shù)n=8獨(dú)立KCL數(shù):n-1=7獨(dú)立KVL數(shù):b-(n-1)=5支路法的一般步驟:(1)標(biāo)定各支路電流、電壓的參考方向;(2)選定(n–1)個(gè)節(jié)點(diǎn),列寫其KCL方程;(3)選定b–(n–1)個(gè)獨(dú)立回路,列寫其KVL方程;(元件特性代入,將KVL方程中支路電壓用支路電流表示)(4)求解上述方程,得到b個(gè)支路電流;(5)其它分析。注:在步驟(3)中若消去支路電流,保留支路電壓,得到關(guān)于支路電壓的方程,就是支路電壓法。12例1.節(jié)點(diǎn)a:–I1–I2+I3=0(1)n–1=1個(gè)獨(dú)立KCL方程:I1I3US1US2R1R2R3ba+–+–I2US1=130V,US2=117V,R1=1,R2=0.6,R3=24.求各支路電流。解(2)b–(n–1)=2個(gè)獨(dú)立KVL方程:R2I2+R3I3=US2UR降=US升R1I1–R2I2=US1–US20.6I2+24I3=

117I1–0.6I2=130–117=13(3)聯(lián)立求解得:I1=10A,I2=–5A,I3=

5A123例2.列寫如圖電路的支路電流方程(含理想電流源支路)。b=5,n=3KCL方程:-

i1-i2+i3=0(1)-

i3+i4

-

i5=0(2)R1

i1-R2i2=uS(3)R2

i2+R3i3

+

R4

i4=0(4)KVL方程:*理想電流源的處理:由于i5=iS,所以在選擇獨(dú)立回路時(shí),可不選含此支路的回路。對(duì)此例,可不選回路3,即去掉方程(5),而只列(1)~(4)及(6)。i1i3uSiSR1R2R3ba+–i2i5i4cR4解u+--R4

i4+u=0(5)i5=iS(6)解列寫下圖所示含受控源電路的支路電流方程。1i1i3uSi1R1R2R3ba+–+–i2i6i5uc24i4R4+–R5u2+–u23方程列寫分兩步:(1)先將受控源看作獨(dú)立源列方程;(2)將控制量用未知量表示,并代入(1)中所列的方程,消去中間變量。KCL方程:-i1-

i2+i3+i4=0(1)-i3-

i4+i5

i6=0(2)※例3.1i1i3uSi1R1R2R3ba+–+–i2i6i5uc24i4R4+–R5u2+–u23KVL方程:R1i1-

R2i2=uS(3)R2i2+R3i3

+R5i5=0(4)-R3i3+

R4i4=-μu2(5)-R5i5+u=0(6)補(bǔ)充控制量方程:u2=-R2i2(7)注:可去掉方程(6)。i6=i1(補(bǔ)充約束條件)(8)支路法的特點(diǎn)及不足:優(yōu)點(diǎn):直接。直接針對(duì)各支路電壓或電流列寫方程能否找到一種方法,使方程數(shù)最少,且規(guī)律性較強(qiáng)?答案是肯定的?;芈罚ňW(wǎng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論