江蘇省蘇州蘇州星海中學(xué)2022年高三考前熱身數(shù)學(xué)試卷含解析_第1頁
江蘇省蘇州蘇州星海中學(xué)2022年高三考前熱身數(shù)學(xué)試卷含解析_第2頁
江蘇省蘇州蘇州星海中學(xué)2022年高三考前熱身數(shù)學(xué)試卷含解析_第3頁
江蘇省蘇州蘇州星海中學(xué)2022年高三考前熱身數(shù)學(xué)試卷含解析_第4頁
江蘇省蘇州蘇州星海中學(xué)2022年高三考前熱身數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.402.設(shè)為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.3.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40404.若集合,,則()A. B. C. D.5.已知集合,,則()A. B.C. D.6.已知實數(shù)滿足不等式組,則的最小值為()A. B. C. D.7.已知是等差數(shù)列的前項和,若,,則()A.5 B.10 C.15 D.208.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.9.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或10.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.11.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.12.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直三棱柱內(nèi)有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.14.設(shè)實數(shù),若函數(shù)的最大值為,則實數(shù)的最大值為______.15.已知函數(shù),令,,若,表示不超過實數(shù)的最大整數(shù),記數(shù)列的前項和為,則_________16.設(shè)函數(shù),則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.18.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對數(shù)的底,k為常數(shù))有一個極大值點和一個極小值點.(1)求實數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.19.(12分)在直角坐標(biāo)系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側(cè))滿足,且的周長為,求的值.20.(12分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.21.(12分)己知的內(nèi)角的對邊分別為.設(shè)(1)求的值;(2)若,且,求的值.22.(10分)在△ABC中,角A,B,C的對邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點,且△ACD的面積為,求sin∠ADB.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力.2.C【解析】

根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.3.D【解析】

計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計算能力和應(yīng)用能力.4.A【解析】

用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.5.C【解析】

求出集合,計算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎(chǔ)題.6.B【解析】

作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點時,截距最小,故,即的最小值為.故選:B【點睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.7.C【解析】

利用等差通項,設(shè)出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點睛】本題考查等差數(shù)列的求和問題,屬于基礎(chǔ)題8.D【解析】

由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.9.C【解析】

先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關(guān)系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.10.B【解析】

轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.11.A【解析】

由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計算求解能力與推理能力,屬于基礎(chǔ)題.12.A【解析】

將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設(shè)球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內(nèi)切球和外接球問題,考查球的表面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.14.【解析】

根據(jù),則當(dāng)時,,即.當(dāng)時,顯然成立;當(dāng)時,由,轉(zhuǎn)化為,令,用導(dǎo)數(shù)法求其最大值即可.【詳解】因為,又當(dāng)時,,即.當(dāng)時,顯然成立;當(dāng)時,由等價于,令,,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.15.4【解析】

根據(jù)導(dǎo)數(shù)的運算,結(jié)合數(shù)列的通項公式的求法,求得,,,進(jìn)而得到,再利用放縮法和取整函數(shù)的定義,即可求解.【詳解】由題意,函數(shù),且,,可得,,又由,可得為常數(shù)列,且,數(shù)列表示首項為4,公差為2的等差數(shù)列,所以,其中數(shù)列滿足,所以,所以,又由,可得數(shù)列的前n項和為,數(shù)列的前n項和為,所以數(shù)列的前項和為,滿足,所以,即,又由表示不超過實數(shù)的最大整數(shù),所以.故答案為:4.【點睛】本題主要考查了函數(shù)的導(dǎo)數(shù)的計算,以及等差數(shù)列的通項公式,累加法求解數(shù)列的通項公式,以及裂項法求數(shù)列的和的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于中檔試題.16.【解析】

由自變量所在定義域范圍,代入對應(yīng)解析式,再由對數(shù)加減法運算法則與對數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因為函數(shù),則因為,則故故答案為:【點睛】本題考查分段函數(shù)求值,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)利用零點分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當(dāng)且僅當(dāng)時取“=”).所以的最小值為.【點睛】本題考查絕對值不等式的解法以及利用柯西不等式求最值.解絕對值不等式的基本方法有零點分段討論法、圖象法、平方法等,利用零點分段討論法時注意分類點的合理選擇,利用平方去掉絕對值符號時注意代數(shù)式的正負(fù),而利用圖象法求解時注意圖象的正確刻畫.利用柯西不等式求最值時注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.18.(1);(2)見解析【解析】

(1)求出,記,問題轉(zhuǎn)化為方程有兩個不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點,且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時,,單調(diào)遞減,,時,,單調(diào)遞增,,由題意,方程有兩個不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為,記,則,因為,所以,所以時,,單調(diào)遞減,時,,單調(diào)遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為,因為,,所以.即函數(shù)的極大值不小于1.【點睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.19.(1);(2)【解析】

(1)設(shè),則由題設(shè)條件可得,化簡后可得軌跡的方程.(2)設(shè)直線,聯(lián)立直線方程和拋物線方程后利用韋達(dá)定理化簡并求得,結(jié)合焦半徑公式及弦長公式可求的值及的長.【詳解】(1)設(shè),則圓心的坐標(biāo)為,因為以線段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設(shè)直線,聯(lián)立得,設(shè)(其中)所以,,且,因為,所以,,所以,故或(舍),直線,因為的周長為所以.即,因為.又,所以,解得,所以.【點睛】本題考查曲線方程以及拋物線中的弦長計算,還涉及到向量的數(shù)量積.一般地,拋物線中的弦長問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把已知等式化為關(guān)于兩個的交點橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為某一個變量的方程.本題屬于中檔題.20.(1)證明見解析(2)【解析】

(1)解法一:作的中點,連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進(jìn)而證得平面.解法二:建立空間直角坐標(biāo)系,通過證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計算出二面角的余弦值.【詳解】(1)法一:作的中點,連接,.又為的中點,∴為的中位線,∴,又為的中點,∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在長方體中,,,兩兩互相垂直,建立空間直角坐標(biāo)系如圖所示,則,,,,,,,,,,,.(1)設(shè)平面的一個法向量為,則,令,則,.∴,又,∵,,又平面,平面.(2)設(shè)平面的一個法向量為,則,令,則,.∴.同理可算得平面的一個法向量為∴,又由圖可知二面角的平面角為一個鈍角,故二面角的余弦值為.【點睛】本小題考查線面的位置關(guān)系,空間向量與線面角,二面角等基礎(chǔ)知識,考查空間想象能力,推理論證能力,運算求解能力,數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.21.(1)(2)【解析】

(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平方關(guān)系得再求解.(2)由,得,結(jié)合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論