2022年江西省白鷺洲中學高三下學期第五次調研考試數(shù)學試題含解析_第1頁
2022年江西省白鷺洲中學高三下學期第五次調研考試數(shù)學試題含解析_第2頁
2022年江西省白鷺洲中學高三下學期第五次調研考試數(shù)學試題含解析_第3頁
2022年江西省白鷺洲中學高三下學期第五次調研考試數(shù)學試題含解析_第4頁
2022年江西省白鷺洲中學高三下學期第五次調研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是定義在上的奇函數(shù),且當時,.若,則的解集是()A. B.C. D.2.已知函數(shù).下列命題:①函數(shù)的圖象關于原點對稱;②函數(shù)是周期函數(shù);③當時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④3.已知為實數(shù)集,,,則()A. B. C. D.4.造紙術、印刷術、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人5.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.6.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.67.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.8.若,則下列不等式不能成立的是()A. B. C. D.9.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.10.定義運算,則函數(shù)的圖象是().A. B.C. D.11.已知向量與的夾角為,,,則()A. B.0 C.0或 D.12.已知為正項等比數(shù)列,是它的前項和,若,且與的等差中項為,則的值是()A.29 B.30 C.31 D.32二、填空題:本題共4小題,每小題5分,共20分。13.若、滿足約束條件,則的最小值為______.14.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.15.已知函數(shù),在區(qū)間上隨機取一個數(shù),則使得≥0的概率為.16.設雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的定義域為,求實數(shù)的取值范圍.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和分別交于點,求.19.(12分)已知拋物線的焦點為,準線與軸交于點,點在拋物線上,直線與拋物線交于另一點.(1)設直線,的斜率分別為,,求證:常數(shù);(2)①設的內切圓圓心為的半徑為,試用表示點的橫坐標;②當?shù)膬惹袌A的面積為時,求直線的方程.20.(12分)某企業(yè)現(xiàn)有A.B兩套設備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質量指標值,若該項質量指標值落在內的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設備抽取的樣本頻率分布直方圖,表1是從B設備抽取的樣本頻數(shù)分布表.圖1:A設備生產(chǎn)的樣本頻率分布直方圖表1:B設備生產(chǎn)的樣本頻數(shù)分布表質量指標值頻數(shù)2184814162(1)請估計A.B設備生產(chǎn)的產(chǎn)品質量指標的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質量指標值落在內的定為一等品,每件利潤240元;質量指標值落在或內的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟效益的角度考慮企業(yè)應該對哪一套設備加大生產(chǎn)規(guī)模?21.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現(xiàn)從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯(lián)表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)22.(10分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

利用函數(shù)奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【詳解】為定義在上的奇函數(shù),.當時,,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數(shù)奇偶性的應用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數(shù)在處有意義時,的情況.2.A【解析】

根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當時,,,,此時與無交點;當時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導數(shù)知識的綜合應用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學生的分析和推理能力有較高要求.3.C【解析】

求出集合,,,由此能求出.【詳解】為實數(shù)集,,,或,.故選:.【點睛】本題考查交集、補集的求法,考查交集、補集的性質等基礎知識,考查運算求解能力,是基礎題.4.D【解析】

先求得名學生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎題.5.A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.6.A【解析】

根據(jù)雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數(shù)學運算能力.7.C【解析】

分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數(shù)學運算的能力,屬于基礎題.8.B【解析】

根據(jù)不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.9.B【解析】

此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.10.A【解析】

由已知新運算的意義就是取得中的最小值,因此函數(shù),只有選項中的圖象符合要求,故選A.11.B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.12.B【解析】

設正項等比數(shù)列的公比為q,運用等比數(shù)列的通項公式和等差數(shù)列的性質,求出公比,再由等比數(shù)列的求和公式,計算即可得到所求.【詳解】設正項等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項為,即有a4+a7=,即16q3+16q6,=,解得q=(負值舍去),則有S5===1.故選C.【點睛】本題考查等比數(shù)列的通項和求和公式的運用,同時考查等差數(shù)列的性質,考查運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結合思想的應用,屬于基礎題.14.【解析】

由題意容積,求導研究單調性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導數(shù)在實際問題中的應用,考查了學生數(shù)學建模,轉化劃歸,數(shù)學運算的能力,屬于中檔題.15.【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.16.【解析】

設直線的方程為,與聯(lián)立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)分類討論,去掉絕對值,化為與之等價的三個不等式組,求得每個不等式組的解集,再取并集即可.(2)要使函數(shù)的定義域為R,只要的最小值大于0即可,根據(jù)絕對值不等式的性質求得最小值即可得到答案.【詳解】(1)不等式或或,解得或,即x>0,所以原不等式的解集為.(2)要使函數(shù)的定義域為R,只要的最小值大于0即可,又,當且僅當時取等,只需最小值,即.所以實數(shù)a的取值范圍是.【點睛】本題考查絕對值不等式的解法,考查利用絕對值三角不等式求最值,屬基礎題.18.(1):;:.(2)【解析】

(1)由可得,由,消去參數(shù),可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標方程為.(2)由(1)得,的普通方程為,將其化為極坐標方程可得,當時,,,所以.19.(1)證明見解析;(2)①;②.【解析】

(1)設過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達定理表示出,化簡即可;(2)由(1)知點在軸上,故,設出直線方程,求出交點坐標,因為內心到三角形各邊的距離相等且均為內切圓半徑,列出方程組求解即可.【詳解】(1)設過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點在軸上,故,聯(lián)立的直線方程:.,又點在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設內切圓半徑為,則.設直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設內切圓的圓心為則,即:,解得:所以,直線的方程為:.【點睛】本題主要考查了拋物線的性質,直線與拋物線相關的綜合問題的求解,考查了學生的運算求解與邏輯推理能力.20.(1)30.2,29;(2)B設備【解析】

(1)平均數(shù)的估計值為組中值與頻率乘積的和;(2)要注意指標值落在內的產(chǎn)品才視為合格品,列出A、B設備利潤分布列,算出期望即可作出決策.【詳解】(1)A設備生產(chǎn)的樣本的頻數(shù)分布表如下質量指標值頻數(shù)41640121810.根據(jù)樣本質量指標平均值估計A設備生產(chǎn)一件產(chǎn)品質量指標平均值為30.2.B設備生產(chǎn)的樣本的頻數(shù)分布表如下質量指標值頻數(shù)2184814162根據(jù)樣本質量指標平均值估計B設備生產(chǎn)一件產(chǎn)品質量指標平均值為29.(2)A設備生產(chǎn)一件產(chǎn)品的利潤記為X,B設備生產(chǎn)一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論