山東省淄博市張店第五中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文聯(lián)考試卷含解析_第1頁(yè)
山東省淄博市張店第五中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文聯(lián)考試卷含解析_第2頁(yè)
山東省淄博市張店第五中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文聯(lián)考試卷含解析_第3頁(yè)
山東省淄博市張店第五中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文聯(lián)考試卷含解析_第4頁(yè)
山東省淄博市張店第五中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文聯(lián)考試卷含解析_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余2頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省淄博市張店第五中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文聯(lián)考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.設(shè)是非零向量,則“存在實(shí)數(shù),使得”是“”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件參考答案:B【分析】由題意結(jié)合向量共線的性質(zhì)分類(lèi)討論充分性和必要性是否成立即可.【詳解】存在實(shí)數(shù),使得,說(shuō)明向量共線,當(dāng)同向時(shí),成立,當(dāng)反向時(shí),不成立,所以,充分性不成立.當(dāng)成立時(shí),有同向,存在實(shí)數(shù),使得成立,必要性成立,即“存在實(shí)數(shù),使得”是“”的必要而不充分條件.故選:B.【點(diǎn)睛】本題主要考查向量共線的充分條件與必要條件,向量的運(yùn)算法則等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.2.已知集合,集合,則集合等于(

)A.B.C.D.參考答案:A3.從1,2,3,4,5,6,7,8中隨機(jī)取出一個(gè)數(shù)為x,執(zhí)行如圖所示的程序框圖,則輸出的x不小于40的概率為()A. B. C. D.參考答案:B【考點(diǎn)】EF:程序框圖.【分析】由程序框圖的流程,寫(xiě)出前2項(xiàng)循環(huán)得到的結(jié)果,得到輸出的值與輸入的值的關(guān)系,令輸出值大于等于40得到輸入值的范圍,利用幾何概型的概率公式求出輸出的x不小于40的概率.【解答】解:經(jīng)過(guò)第一次循環(huán)得到x=3x+1,n=2,經(jīng)過(guò)第二循環(huán)得到x=3(3x+1)+1,n=3,此時(shí)輸出x,輸出的值為9x+4,令9x+4≥40,得x≥4,由幾何概型得到輸出的x不小于40的概率為:.故選:B.【點(diǎn)評(píng)】解決程序框圖中的循環(huán)結(jié)構(gòu)時(shí),一般采用先根據(jù)框圖的流程寫(xiě)出前幾次循環(huán)的結(jié)果,根據(jù)結(jié)果找規(guī)律,屬于基本知識(shí)的考查.4.設(shè)F1、F2是雙曲線的左右焦點(diǎn),若雙曲線上存在一點(diǎn)A使∠F1AF2=90°,且|AF1|=3|AF2|,則雙曲線的離心率為()A. B. C. D.參考答案:B因?yàn)?,根?jù)雙曲線的幾何定義可得,,所以.在中,因?yàn)?,所以,即,所以,則,故選B.5.已知、是非零向量且滿足(-2)⊥,(-2)⊥,則與的夾角是(

A.

B.

C.

D.參考答案:答案:B6.若f(x)=2sin(ωx+φ)+m,對(duì)任意實(shí)數(shù)t都有f(+t)=f(﹣t),且f()=﹣3,則實(shí)數(shù)m的值等于()A.﹣1 B.±5 C.﹣5或﹣1 D.5或1參考答案:C【考點(diǎn)】HK:由y=Asin(ωx+φ)的部分圖象確定其解析式.【分析】利用對(duì)任意實(shí)數(shù)t都有f(+t)=f(﹣t)得到x=為f(x)的對(duì)稱(chēng)軸,得到f()為最大值或最小值,得到2+m=﹣3或﹣2+m=﹣3求出m的值.【解答】解:因?yàn)閷?duì)任意實(shí)數(shù)t都有f(+t)=f(﹣t),所以x=為f(x)的對(duì)稱(chēng)軸,所以f()為最大值或最小值,所以2+m=﹣3或﹣2+m=﹣3所以m=﹣5或m=﹣1故選C.7.直線ax+by=0與圓x2+y2+ax+by=0的位置關(guān)系是()A.相交 B.相切 C.相離 D.不能確定參考答案:B【考點(diǎn)】直線與圓的位置關(guān)系.【專(zhuān)題】計(jì)算題;方程思想;綜合法;直線與圓.【分析】將圓的方程化為標(biāo)準(zhǔn)方程,表示出圓心坐標(biāo)和半徑r,利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,由d=r可得出直線與圓位置關(guān)系是相切.【解答】解:將圓的方程化為標(biāo)準(zhǔn)方程得:(x+)2+(y+)2=,∴圓心坐標(biāo)為(﹣,﹣),半徑r=,∵圓心到直線ax+by=0的距離d===r,則圓與直線的位置關(guān)系是相切.故選:B.【點(diǎn)評(píng)】此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,直線與圓相切時(shí),圓心到直線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.8.向量則A.1

B.2

C.3

D.4參考答案:D9.已知f1(x)=ax,f2(x)=xa,f3(x)=logax,(a>0且a≠1),在同一坐標(biāo)系中畫(huà)出其中兩個(gè)函數(shù)在第Ⅰ象限的圖象,正確的是()A. B. C. D.參考答案:B考點(diǎn): 對(duì)數(shù)函數(shù)的圖像與性質(zhì);冪函數(shù)的圖像.專(zhuān)題: 圖表型.分析: 考查題設(shè)條件,此三個(gè)函數(shù)分別為冪函數(shù),指數(shù)函數(shù)與對(duì)數(shù)函數(shù),由于其中的參數(shù)是指數(shù)與對(duì)數(shù)函數(shù)的底數(shù),故分a>1與0<a<1兩類(lèi)討論驗(yàn)證即可.解答: 解:冪函數(shù)f1(x)的圖象一定經(jīng)過(guò)(1,1),當(dāng)a>0時(shí)經(jīng)過(guò)原點(diǎn);指數(shù)函數(shù)f2(x)的圖象經(jīng)過(guò)點(diǎn)(0,1),當(dāng)a>1時(shí),圖象遞增,當(dāng)0<a<1時(shí),圖象遞減;對(duì)數(shù)函數(shù)f3(x)的圖象經(jīng)過(guò)點(diǎn)(1,0),當(dāng)a>1時(shí),圖象遞增,當(dāng)0<a<1時(shí),圖象遞減,對(duì)于A,其中指數(shù)底數(shù)應(yīng)大于1,而冪函數(shù)的指數(shù)應(yīng)小于0,故A不對(duì);對(duì)于B,其中冪函數(shù)的指數(shù)大于1,對(duì)數(shù)函數(shù)的底數(shù)也應(yīng)大于1,故B對(duì);對(duì)于C,其中指數(shù)函數(shù)圖象遞增,其底數(shù)應(yīng)大于1,而對(duì)數(shù)函數(shù)圖象遞減,其底數(shù)小于1,故C不對(duì);對(duì)于D,其中冪函數(shù)的圖象遞增,遞增的越來(lái)越快,指數(shù)函數(shù)的圖象遞減,故冪函數(shù)的指數(shù)應(yīng)大于1,而指數(shù)函數(shù)的底數(shù)小于1,故D不對(duì).故選B.點(diǎn)評(píng): 本題考查的知識(shí)點(diǎn)是指數(shù)函數(shù)的圖象和性質(zhì),對(duì)數(shù)函數(shù)的圖象和性質(zhì),冪函數(shù)的圖象和性質(zhì),熟練掌握三個(gè)基本初等函數(shù)的圖象和性質(zhì)是解答本題的關(guān)鍵.10.已知函數(shù)對(duì)任意都有,若的圖象關(guān)于直線對(duì)稱(chēng),且,則A.2

B.3

C.4

D.0參考答案:二、填空題:本大題共7小題,每小題4分,共28分11.已知四面體ABCD的頂點(diǎn)都在球O球面上,且球心O在BC上,平面ADC平面

BDC,AD=AC=BD,DAC=90,若四面體ABCD的體積為,則球O的體積為_(kāi)_______.參考答案:12.若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)的值為_(kāi)___________。參考答案:213.若,則的最小值為

參考答案:4,當(dāng)且僅當(dāng),即,即時(shí)取等號(hào),所以最小值為4.14.已知函數(shù),若x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是

. 參考答案:(-∞,4)15.若實(shí)數(shù)、滿足,則的最大值為

。參考答案:9

16.設(shè)f(x)是定義在R上的奇函數(shù),其圖象關(guān)于直線x=1對(duì)稱(chēng),且當(dāng)0<x≤1時(shí),f(x)=log3x.記f(x)在[﹣10,10]上零點(diǎn)的個(gè)數(shù)為m,方程f(x)=﹣1在[﹣10,10]上的實(shí)數(shù)根和為n,則有()A.m=20,n=10 B.m=10,n=20 C.m=21,n=10 D.m=11,n=21參考答案:C【考點(diǎn)】函數(shù)與方程的綜合運(yùn)用.【分析】利用函數(shù)的對(duì)稱(chēng)性,函數(shù)的奇偶性求解函數(shù)的周期,畫(huà)出函數(shù)的圖象,然后求解函數(shù)的零點(diǎn)個(gè)數(shù).【解答】解:∵函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),∴f(2﹣x)=f(x),又y=f(x)為奇函數(shù),∴f(x+2)=f(﹣x)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x)的周期為4,又定義在R上的奇函數(shù),故f(0)=0,當(dāng)0<x≤1時(shí),f(x)=log3x.可得x=1,f(1)=0,f(x)在[﹣10,10]上圖象如圖:可得m=21,方程f(x)=﹣1在[﹣10,10]上的實(shí)數(shù)根分別關(guān)于x=﹣7;﹣3,1,5,9對(duì)稱(chēng),實(shí)數(shù)根的和為n,n=﹣14﹣6+2+10+18=10.故選:C.【點(diǎn)評(píng)】本題考查函數(shù)與方程的綜合應(yīng)用,函數(shù)的圖象與零點(diǎn)的個(gè)數(shù)問(wèn)題,考查數(shù)形結(jié)合思想以及轉(zhuǎn)化思想的應(yīng)用.17.設(shè)、是關(guān)于x的方程的兩個(gè)不相等的實(shí)數(shù)根,那么過(guò)兩點(diǎn),的直線與圓的位置關(guān)系是

.(相交、相離、相切)

參考答案:相離三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.已知函數(shù)(其中a∈R,且a為常數(shù)).(1)若對(duì)于任意的,都有成立,求a的取值范圍;(2)在(Ⅰ)的條件下,若方程在x∈(0,2]上有且只有一個(gè)實(shí)根,求a的取值范圍.參考答案:解(1)當(dāng)時(shí),∵對(duì)于恒成立,∴在上單調(diào)遞增∴,此時(shí)命題成立;當(dāng)時(shí),∵在上單調(diào)遞減,在上單調(diào)遞增,∴當(dāng)時(shí),有.這與題設(shè)矛盾.故的取值范圍是(2)依題意,設(shè).原題即為若在上有且只有一個(gè)零點(diǎn),求的取值范圍.顯然函數(shù)與的單調(diào)性是一致的.①當(dāng)時(shí),因?yàn)楹瘮?shù)在區(qū)間上遞減,上遞增,所以在上的最小值為,由于,要使在上有且只有一個(gè)零點(diǎn),需滿足或,解得或;②當(dāng)時(shí),因?yàn)楹瘮?shù)在上單調(diào)遞增,0

且,所以此時(shí)在上有且只有一個(gè)零點(diǎn);③當(dāng)時(shí),因?yàn)楹瘮?shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)?,所以?dāng)時(shí),總有,∵∴,所以在上必有零點(diǎn),又因?yàn)樵谏蠁握{(diào)遞增,從而當(dāng)時(shí),在上有且只有一個(gè)零點(diǎn)綜上所述,當(dāng)或或時(shí),方程在上有且只有一個(gè)實(shí)根.19.函數(shù).(1)求的單調(diào)區(qū)間;(2)若,求證:.參考答案:(Ⅰ).

…1分①當(dāng)a≤0時(shí),,則在上單調(diào)遞減;………………3分②當(dāng)時(shí),由解得,由解得.即在上單調(diào)遞減;在上單調(diào)遞增;綜上,a≤0時(shí),的單調(diào)遞減區(qū)間是;時(shí),的單調(diào)遞減區(qū)間是,的單調(diào)遞增區(qū)間是.

……5分(Ⅱ)由(Ⅰ)知在上單調(diào)遞減;在上單調(diào)遞增,則.

…………6分要證≥,即證≥,即+≥0,即證≥.………………8分構(gòu)造函數(shù),則,由解得,由解得,即在上單調(diào)遞減;在上單調(diào)遞增;∴,即≥0成立.從而≥成立.………12分20.(本小題滿分12分)的三個(gè)內(nèi)角依次成等差數(shù)列.(Ⅰ)若,試判斷的形狀;(Ⅱ)若為鈍角三角形,且,試求的取值范圍。參考答案:(Ⅰ)∵,∴--------------------------------------------------------2分∵依次成等差數(shù)列,∴------------------------------------4分由余弦定理,∴∴為正三角形。---------------------------------------------------------------------------------6分(Ⅱ)--------------------------------------------------------------9分∵,,∴∴的取值范圍是.21.(本小題滿分12分)已知函數(shù)其中為自然對(duì)數(shù)的底數(shù),.(1)設(shè),求函數(shù)的最值;(2)若對(duì)于任意的,都有成立,求的取值范圍.參考答案:22.(15分)(2010?如皋市校級(jí)模擬)如圖所示,在直三棱柱ABC﹣A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點(diǎn).(1)求證:B1C∥平面A1BD;(2)求證:B1C1⊥平面ABB1A1;(3)設(shè)E是CC1上一點(diǎn),試確定E的位置使平面A1BD⊥平面BDE,并說(shuō)明理由.參考答案:【考點(diǎn)】直線與平面平行的判定;集合的含義;直線與平面垂直的判定;平面與平面垂直的判定.【專(zhuān)題】計(jì)算題;證明題.【分析】(1)連接AB1與A1B相交于M,由三角形中位線定理,我們易得B1C∥MD,結(jié)合線面平行的判定定理,易得B1C∥平面A1BD;(2)由于已知的幾何體ABC﹣A1B1C1為直三棱柱,結(jié)合AB=BB1,AC1⊥平面A1BD,根據(jù)正方形的幾何特征,我們易得到AB1⊥B1C1,BB1⊥B1C1,根據(jù)線面垂直的判定定理,即可得到B1C1⊥平面ABB1A1;(3)由圖可知,當(dāng)點(diǎn)E為CC1的中點(diǎn)時(shí),平面A1BD⊥平面BDE,由已知易得DE∥AC1,結(jié)合AC1⊥平面AB1D,我們易得到DE⊥平面AB1D,進(jìn)而根據(jù)面面垂直的判定定理得到結(jié)論.【解答】解:(1)證明:連接AB1與A1B相交于M,則M為A1B的中點(diǎn),連接MD,又D為AC的中點(diǎn),∴B1C∥MD,又B1C?平面A1BD,∴B1C∥平面A1BD.(4分)(2)∵AB=BB1,∴四邊形ABB1A1為正方形,∴AB1⊥A1B,又∵AC1⊥面A1BD,∴AC1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論