版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
二重積分的概念與性習題 xy2dxy3dDxy xy1Dxy2xy3,所以xy2dxy3d DDxy2d與xy3dDDDx22y122所圍成Dxy2xy3,所以xy2dxy3d lnxydlnxy2dD為三角形閉區(qū)域,三頂點分別為10,1,1,20
DDxy3x50y1D
(1)IDxyxydDxy0x10yD0xyxy2,所以0I(2)IDsin2xsin2ydDxy0x0yD0sin2xsin2y1,所以0I2(3)IDxy1dDxy0x10y解:在D上,1xy14,所以2ID(4)Ix24y29dDxyx2y2DD上,13x24y2925,所以52I
x2y2d,其中DxDx2y2d1D
x1,yD3x2ydDxy22D3x2yd2Dx33x2yy3dDxy0x10yD
3x2yDxcosxyd,其中D為頂點分別為00,0和,的三角解:DxcosxyDyexydxdyDx2y2xy1D
yexydxdy
1222
2yexy
xy2dxdyDxpy22pxp02
xy2dxdy
p
2p2
exydxdyDx0x1y0y1D exydxdy1dx1D
xsinxydxdyDx0xy0y2
xsinxydxdy
dx2xsinxydy
xsinxcosxdx Dsinxycosx2y2dxdyDx2y2DDxysinxycosx2y2dxdyDDx3sinx2y2dxdyDx2y22DDyx的奇函數(shù),所以x3sinx2y2dxdyDDD
1x2dxdyDx2y21212
dxdy1
dy121x21 1
dx3212DxydxdyDxy12xydxdy81dx1xxdy81xx2dx4 7D x2y2dxdyDx2y21x2y22x7D
解 x2y2dxdy
3
r3dr
203
r3dr DD
sinx2y2dxdyD為2x2y24sinx2y2dxdy2 2rsinr2dr
21cos21cos42
0 cos2cos42R2r2D R2x2y2dxdyDx2y2R2r2D
2
R2R2x2
dxdy
d
rdr
d D解:D
R2x2y2dxdyDx2y2RxR R2x2y2dxdy22d
R R2r2R2r222 1sin3d 30 Dx2xydxdyDxy1xy2yxy2xDxy解:做變換
x
u1
,x,y
111111
y
1
u,
1
1
11
xydxdy1 3du
41v3dv962313Dx3y3dxdyDx22yx23yxy2x2y22313Dx2
2
1
12解:做變換
xu3v3,則
x,y
u3
u3v3
1,所以
1
u,
2
21
yu3v 1u2v
3
7u
3v
3
u3v
ydxdy2
dv2
72du1442DxydDy
x,yx2 12 解:xyddx2xydy xxdx
03 Dxy2dDx2y24yD44
2
y4 Dxyd2
xydx22y2dy15 DexydDxy:xD
y1D10exyd0dxx1exydy1dx1xD100e2x1e1dx1ee2x1dxe1 Dx2y2xdDy2yxy2xD解 x2y2xd
2dyyx2y2xdx
219y33y2dy13
0 (5)D1xsinyd,其中D為頂點分別為00,10,12和0,1的梯形閉區(qū)域
1xsinyd1dxx11xsinydy11x1xcos1xdx 32sin2sin1cos2 2D(6)x2y2d,其中Dxy0ysinx0xD解 x2y2d
dxsinxx2y2dy
x2sinx1sin3xdx240
0 D(7)y23x6y9d,其中Dxyx2y2R2D2
x2
Rr D
3x6y9dD
9d
d0
92R49R2
20
d
9R 如果二重積分Dfx,ydxdy的被積函數(shù)fx,y是兩個函數(shù)f1x及f2y的乘積fxyf1xf2y,積分區(qū)Dx,yaxbcyd,證明此fx
ydxdybfxdx
dfydy.D
f1xf2ydxdybdxdf1xf2ydybdf2ydy b fxdxdfydy.b IDfx,ydyxy24xy x4解:I fx,ydyy x4
fx, 4xx2y2r2y0解I
r fx,ydy
r2 fx,y r2r2
r2yxx2y21x0x I1x
fx,ydy環(huán)形閉區(qū)域xy1x2y24;44 2 f444441 fx,41 1 fx, 4以O00,A20,B2,1,C0,1為頂點的矩形 I0dx0fxydy
f以O00,A10,B1,1為頂點的三角形 I0dx0fxydy0dyyf以O00A2a0B3aa,Caa為頂點的平行四邊形; I0
fx,ydy 0dy
fx,y I1
fx,yyx2xy2I
fx,y yx2,y4x2I
4 fx, xy2y2x2yx0 2 I dxxfx,ydy dxxfx,y 121220dyyfx,ydx1 fx,yy fxyDDyxyaxbba所圍成的閉區(qū)域。 adxafx,ydyadyyfx,y adxafxydyDfxyda
fx,yy(1)0
fx, 0dy0fxydx0dxxfx
2 fx,y 2解 fx,y 2
dx
fx,y
21(3)0 fx1解:0 fx,y22
fx,y(4)122x
fx,y解1dx2
fx,ydy0dy2
fx,y 1e1e
fx,ye解:1 fx,ydye
0 fx,
0dxsinxfx,y2 sin arcsin0dxsinxfxydy1dy2arcsinyfxydx0dyarcsin2
fx,y04(7)04
14dy4
fx,y
fx,
2 0dy 2
fx,ydx1 3 3
fx,y解:0 fx,ydx1
fx,y0dx
fx,y (10)0
fx,ydya 0dx0fxydy0
fx,y1(11)0 fx,y1 3y解:0 fx,ydy0 fx,y3yyay(12)0dyyfx,yy y1x解:0dyyfx,y1x
fx,11x
fx,y y 0dy0 fxdx0a證明: y y證明: y y D
emax
其中Dx0yayx圍成的
0dy0 fxd應用二重積分證明:由射線,與曲線rrD2 r 證明:Sdd rdr 求心臟線ra1cos12
S20a1cos
d 2
x2y2
fydxdyxx解:x2y2
fydxdyxx
22
frsinrdrrcosrcos
cos2ftan22222
DydxdyD0xyxa2x2y2b2ba0Darctan b
arctanb3 Dydxdyarctandarsindrarctan sin b3a3 1 12 DarctanxdxdyDxyRyDarctanxdxdy
a2x2y2
3/
,D:0xa,0y
a
3/224d
3/2dr Da2x2y2
a2r2
x2y2x
xy
ux1
xu1
vy
yv x,y 0
xydxdy uv
,由對稱性,u,v
x2y2x u2v22u2v22
uvdudv0,所
x2y2x
xydxdy
u2v22
dudv2
x4y4
x2y2 x2y2dxdy
2
4cos4sin4r3dr
x4y4
0cos4sin41 1tan d
1
dx
2 d(x ) 201tan4
01
0(x1)2 xxyuyvxDfxydxdy(Dx0y0xy1的公共部分)化為變量uv的累次積分。xy解:做變換
x
1
,x,y
111111
y
1
u,
1
1fx,ydxdy
1duf
,uv
1
1v 1y2pxy2qxx2ayx2by0pq0abx2
2
1
12
xu3v3
x,y,
u3
u3v3
1
1
u,
2
21 x
yu3v
u3v
u3v32313 baq2313所以Sddu1dv p 設平面薄片所占的閉區(qū)域D由直線xy2yxx軸所圍成,其面密度xyx2y2m
x2y2d
1dy2yx2y2dx
184y4y28y3dy4
x0,y0x1,y1z02x3yz解:V
62x3yd1
62x3ydy
192xdx711
0 x0,y0xy1z0x2y26z
1
4x3 VD6xyd0dx06xydy035x2x3dx6 zx22y2z62x2y2解:聯(lián)立z62x2
得投影區(qū)域Dxy0x2y2所以V
62x2y2x22y2d2d
263r2rdr 畫出積分區(qū)域,把積分Dfxydxdy Da(1)x,yx2y2a2aaDfxydxdy
d
frcos,rsin(2)x,yx2y2
fx,ydxdy
2 2
frcos,rsinb(3)xya2x2y2b2其中0abDfxydxdy
d
frcos,rsin(4)x,y0y1x,0x
fx,ydxdy2dcos
frcos,rsin(5)x,yx2y1,1x
fx,ydxdy4dcos2
frcos,rsin44
frcos,rsinrdr
34
cos2
frcos,rsin(6)x,yx2y2axa0,
fx,ydxdy
22
frcos,rsin(7)x,yx2y2byb0, Dfxydxdy0d
frcos,rsin(8)x2y24xx2y28xyxy2x Dfxydxdy4
frcos,rsin(9)x2y2axx2y2aya0所圍區(qū)域的公共部分。fx,ydxdy4d
a
frcos,rsinD24
frcos,rsin (1)0dx0fx,y dxfx,ydy4d
frcos,rsin24
frcos,rsin20(2)20
3xf
x2y2x解:2 3xfx
x2y2dy
3
2
fr
4
01
fx,y
fx,ydy2d frcos,rsinrdr.
cos(4)0
fx,y11
dx0fx,ydy
40
1cos2
frcos,rsin(1)0 xy
x2y2dy2d
2a
r3dr24a4cos4d
.2ax 2ax (2)0
x2y2 a
x2y2dy4dcosr2dr 32 2
3cos4a34
4
3ad a
a1dsin a1
dx
a2a
30cos
30(1
3
(1x 12
1
1x2 22
2 2
2
1201x 1x
1
1x 2
2 2
2
1201x 1x
1
1x a3ln32222
0x1 x1
x2
2
x2y22dy
40
cos2dr0
0cos2
d
2a(4)0aa
a2y2x2y2a2a2
解: x2y2dx2dr3dr d 0 fxy在閉區(qū)域Dxyx2y2yx0上連續(xù)fx,yfxy。Dfx,ydxdy
81x21x21x2D
fx,y
fx,ydxdy sin
1r2d1r
fx,ydxdyrdr
fx,y
所以
fx,ydxdy1.,fx,y
28
11x2Dex2y2dDx2y24Dx2
2
2e41 2 d0d0erdr0 de2 D(2)ln1x2y2dDx2y21D
1 ln 1ln1x2y2d2drln1r2dr2ln2
d
0
2
4(3)
arctanydDx2y24x2y21y0yxx
yd4d
rdr4
. 02 x2xDy2dDx2yxxy1 x y解: 2d1yx1x2
y2dy1
xdx
dDx1x2
1
1x2
11
2d2d
rdr 2D1x 01 2Dx2y2dDyxyxayay3aa0所圍成的閉D
3a
a3 Dxydadyyaxydxa2ayay3dy14a D x2y2d其中D為圓環(huán)形閉區(qū)域xya2x2y2b2D 解: x2y2d dr2dr b3a3 D2上一段弧0與直線 2 xyx2y2m
d2d
r3dr244d R2r2y0ykxk0zR2r2
R2x2R2x2
d d
rdr 3xOyx2y2axzx2y2
a
a4cos4
解:V
x2y2d
2
r3dr
d D(1)xy2sin2xydxdy,D為平行四邊形閉區(qū)域,它的四個頂點是D0,2,,2和0,1212xuv1212
xyxy
,則y
2u2
x,yu,
2 2
v2sin2
33sin2
xydxdy
dv
du Dx2y2dxdyDxy1xy2yxy4x所圍成Dxu,vxu,v
x,
1u2v122112213解:做變換y
,則y
u,
.,所以u uv2uv2 4 2
7lnDxydxdy1du12vdv1
ln2du 3
exydxdyDxyxy1xy
xu
x,y 解:做變換
y
,則y
u,v
,所以 u
exydxdy
eudv
y2
(4)Da2b2dxdy,其中Dx,y b2 xarcos解:做變換ybr
x,y,則r,
ab
arbr
,所以x2y2
b2dxdy0 Dxy4xy8xy35xy315
1 xy
xu2v2,x,
u2v 解:做變換
,則
xy3
y
12
u
1
3 2v2 dxdy8du151dv2ln 5Dyx3y4x3xy3x4y3
311
x
x,
u8v33解:做變換
u1
, u,
193 344
y
8v
u8v8所以
dxdy
1
434
dv18Dxy1x0y0cosxydxdy1
xy
xuv
xyxy
,則y
1211212u2
x,yu,
21.,所以 2xy
cosv dxdy
du dvusin1du
xy
11(1)
fxydxdy
fudu其中閉區(qū)域Dx,xuv
xy121211212
xyxy
,則y
2u2
x,yu,
12 .,所以1 2fxydxdy1du1fudv
fu1 1
faxbycdxdy
f
cdu, 1a2Dxyx2y21a21a2證明:做變換
a2b2 ,則a2b2a2b2 a2xaaaa2 a2
aubva2a2
x,yu,
y a2a2
a2faxbycdxdy
f
a2a2
cdv2
f
1a21a2習題Ifxyzdxdydz為三次積分,其中積分區(qū)域xyzxy10z0 Ifxyzdxdydz0
fx,y,zzx2y2z1I
fx,y,zdxdydz1 fx,y,z1 1
x2zx22y2z2x2I
fx,y,zdxdydz
fx,y,
x22 由曲面czxyc0a2
Ifxyzdxdydz
dy
fx,y,z
(1)z2dxdydz為兩個球:x2y2z2R2x2y2z22RzR0的x2y2z2R2解:由x2y2z22Rzz
R2
z2dxdydz
z2dxdy2
z2dxdyR
R R
2 2 2 2 2 2 2Rz dzR R dz02zlnx2y2z2
dxdydz,其中x2y2z21 xyz關于xOyzzlnx2y2z2
x2y2z2
dxdydzy2z2dxdydz,其中xOyy22xx軸旋轉(zhuǎn)而成的曲面x5所圍成的閉區(qū)域。
y2z2
。易得在yOzD0yzy2z210,所
y2
dxdydz
225y5y
2
y2z2
10
r2
2D5 yzdydz0d 52rdr321 11解:1
xyz
dxdydz,其中x0y0z0xyz111
dxdydz
0
1x0
xyz121 1
1dy
1ln21xln1xdx3ln
xy 2 (5)xydxdydz,其中zxyz0xy1
1x21
xydxdydz
xydz
x2y2dy
dx
xy2z3dxdydz,其中zxyyxx1z02
2
xx5
1 xyzdxdydz0dx0
xyzdz0
dy028dx364(7)xyzdxdydz,其中x2y2z21x0y0z0
xyzdxdydz2d2d
5sin3cossincosd1
xyzsinxyzdxdydz,其中x0,y0z0xyz2
x
xyzsinxyzdxdydz2dx
dy
2 2dx xyxysinxydy2
xxsinx
(9)lx2my2nz2dxdydz,其中x2y2z2a2所圍成的閉區(qū)域(lm為常數(shù)
lx2my2nz2dxdydz
lmnx2y2z2 lm
d0d0
sind
lmn.(10)
x2y2dxdydz,:x2y2z2,0z h
x2x2
dxdydz
d0drrrdz6(11)xydxdydz,:xy2z,z
2
ydxdydzddrr2rdz3 2
x2y2dxdydz,:x2y2z2
x2y2dxdydz
2x2y2z2 22dda4sind8a53
dxdydz,x2y2a2z0zhh0所圍成。x2x2y2
2 2
3
dxdydz
d
dz
ah2
a. x2y2
r2
3 (14)zdxdydz,:x2y2z22,x2y2x2y2z2解:由x2y2
z1 zdxdydz
dzDzdxdy0dzDzdxdy
1z2dz
22z2zdz7 (15)z2dxdydz,:x2y2z2a2,x2y2axaz2dxdydz
2
a
z2rdz
2
acos
ra2r22
acos
3
a2aa2
3334a5 822d
ra2r22dr22 1sin5d
0
15(16)
x2y2zdxdydz其中由2zx2y2z22
2
r4
xyzdxdydz ddrr2zrcossindz d28
cos
0 2128cos2sin2d32 R2x2x2y2z2R2x2
z
x2x2
x2y2z2dxdydz
d4d
4sind
2
2. z3dxdydz,:x2y2z2R2,x0,y0,z
z3dxdydz2d2d
5cos3sind
.
x2y2z2dxdydz其中x2y2z2z
x2y2z2dxdydz
d2d
3sind cos4sin d2 d xydxdydz,:axyzb,z
x2y2dxdydz
d2d
4sin3d
b5a5 x2y2 dxdydz其中xyz2x2y2
dxdydz
d2d
2a
sind1 x2y2 1 d22a2cos2sind
.
dxdydz,:a2x2y2z2b2bax2y2z21
b
1
2dxdydz
d0d
2d4 xyz
b(23)
xyzdxdydz,:x2y2z2
x2x2
xyzdxdydz
zdxdydz
d4
2a
3cossind d44a4cos5sind
. (24)
1x2y2z2dxdydz,:x2y2z2 1x21x2y21
dxdydz
d0d
sind (25)
dxdydz, xasincos解:做變換ybsinsin1z1
abc
1a2b2c2dxdydz
d0d
sin 4
xyzdxdydz,:xa2yb2zc2R2ux
uvwabc解:做變換vybwz
abcdudvdw
3
abc.設函數(shù)fx連續(xù)
fx2y2z2dvFt ,
fx2y2d fx2y2dGt ,tt
fx2dx其中txyzx2y2z2t2Dtxyx2y2t討論Ft在區(qū)間0內(nèi)的單調(diào)性證明:當t0Ft2Gt(1)
fx2y2z2dv
2 tf22sindFt t 0 00
fx2y2d
0
tfr202tf22d0 0tfr20F't
2ft2
tfr2rdr2ft200tfr2rdr00
tf22d
2ft2ttfr2trrdr0tfr2rdr0 ,所以Ft在區(qū)間0內(nèi)單調(diào)上升 fx2y2
tfr2
tfr2(2)Gt
Dt t
tfx2
2fx2
fx2 .令Httfr2r2drtfr2drtfr2rdr2,則H0 .令
。當t0時, H'tft2t2tfr2drft2tfr2r2dr2ft2ttfr
,所以0ft2ttr0
fr2drtfr2r2drtfr2drtfr2rdr2此等價于Ft2Gt 設有一物體,占有空間閉區(qū)域xyz0x10y10z1,在點xyzxyzxyzmxyz如果三重積分fxy
的被積函數(shù)fxyz
是三個函數(shù)f1x,f2y,f3z
fx,y,zf1xf2yf3z
x,y,zaxbcyd,l bfx,y,zdxdydzb bdxdf1xf2 daf1xdxcf2y
1xyz
,其中x0,y0z0xyz1
3 0dx
21x計算xzdxdydz,其中z0zyy1yx2所圍成的閉yOzx是奇函數(shù),所以xzdxdydz
zdxdydz其中zx2x2
zhR0h0 0 解 z
x2y2z2dv其中x2y2z21
x2y2z2dv2dd14sind4 (2)zdv其中閉區(qū)域由不等式x2y2za2a2x2y2z2所確定
zdv
d4d
2a
3cossind
d44a4cos5sind
7. (1)
xydv其中x2y21z1z0x0y0
xydv2d
r3cossindz 2x2y2dv,其中為由曲面4z225x2y2z52x2y2dv
0
0
5r3dz8求下列區(qū)域V(1)V:x2y2a2,z0,zmxm
解:V
dxdydz
2
rdz
2
mr2cosdr 3
(2)V:a2b2c22,b2c2aax2y2z2 解:由
xay2z2
x2VVdxdydz dxDdydz0
bc2
2x427
a 6 (3)Vx2y2a2y2z2a2z2x2a2所圍成(9.33VVdxdydz
1sin34 4 cos(1)z6x2y2zx2x2
x2y2解:由
z26Vdxdydz0(2)x2y2z22aza0x2y2z2(z軸的部分x2y2z2解:由x2y2
zaVdxdydz0x2x2解:由
zx2y2x2y2z11zVdxdydz0dzDz55x2解:由
x2y24z5x2y2z1
xdydz
ay2a2az,x2y2 2
,z0Vdxdydz02a3a3sin20 y2a2az,x2y2ax,z0a r2sin2 V dxdydz
2
a
rdz
2
acosrarsin
a3cos2 a3sin2cos4
d
2 x2y2az4a2x2y2z24az解:由x2y2z2
za
zVdxdydzz
dzDdxdy
4az
azdz 232a39a337a3.所以上下之比為27 求球體ra位于錐面3
和23解:V
dxdydz
d3d
2sind
3.3 3x2y2z22zx2y2x2y2z212解:由zx212
z1V
dxdydz
dxdy0zdz
22z2dz8276zR的球體,在其上任意一點的密度的大小與這點到球心的距離成正6z 解mdvkx2y2z2dxdydzddkr3sindrk fxy
為由曲面zx2y2yx2y1z0 x2解 fx,y,zdxdydz fx,y,z9.4
習題x2y2z2a2x2y2ax內(nèi)部的那部分面積。11 22ax ax 1
a
r dxdy4a2d
a2x2
a2r4a2d
a
dr24a a2r x2x2y2z22x2x2x2y2z2x2
所割a
x2y2
得za.所以球面x2y2z22az被錐面z 所恰為半球面,面積為2旋轉(zhuǎn)拋物面2zx2y2x2y21解S
1x2y2dxdy2d
1r2rdr2223曲面azxyx2y2a231a1aay x
3S3
dxdy
d
rdr
22(4)x2y2R2x2z2R2y2z2R2所圍成的立體的表面;S
112R2x2
R2R2r2cos2
dxdy
4R R
224R24 d24222
2R2.0cos cos(5)zarctanyx2y21xS
1 1x2 1y 1y22 x2 x2
11rdr
2ln
22 2x2求錐面z 被柱面z22xx2解:由
x2y2
解得x
2y2
,所以在xOy面上的投影為1xyx 1xyx x S
dxdy
22
222cos2d 2x2y2R2x2z2R2S
dxdy
R2R
dr12R2x2R12R2x2R2r2cos2 S
dxdy 11ab c c a2b2a2c2Dy
2pxxx0y02222 23205x 0 23205
03x0
x00 0
x2x
x0
22x0020
1
32y
02322320x0D為半橢圓形閉區(qū)域x,y
21,y a解:x0;y a
a Dacosbcos0abd2d2 x
Dyx2yx所圍成,它在點xy處的面x,yx2y,求該薄片的質(zhì)心。 xD
x2
0
xx2 1x1設有一等腰直角三角形薄片,腰長為a,各點處的面密度等于該點到直角頂點的距離的x
xx2y2
x2y2(1)z2x2y2,zx0y0z
a2(2)z A2x2y2,za2x0;y
d2d
3sincosdz
32A3a33A4a4 3A
AaAaa32A3a3 3
A2Aa(3)zx2y2,xya,x0,y0,z a x2 a xxdxdydz0a
xdz152a;y2aaa
0
a
x2 a x2
az a
0
a
x2 aax0;y
x2y2z2
d2d
2R
5cossind
z
x2y2z2dxdydz
4 2R4
32R54
d2d sind
R2 3 a,則0y
,可解得a 3 x2x2求質(zhì)量分布均勻的半個旋轉(zhuǎn)橢球體xyz
21z0
b 0 0 Dz
x0y0z
2a2b8 求高為h,底半徑為az ha2hz2z
0dzD
12 x0;y0;z
a2h4 設物體占據(jù)空間區(qū)域V0x10y10z1,在點Mxyz處密度為xyzmxyzdxdydzdxdyxyzdz3 xxxyzdxdydz0dx0dy0xxyzdz65.y5;z5 0 2 P0的距離的平方成正比(k,求此物質(zhì)球體質(zhì)心的位x0;y R2
2z
R2
2
R2 dd
k3cossin2sin2cos d
2
R2 ddk2sin2sin2cos
d 154R
2 設均勻薄片(面密度為常數(shù)1)D(1)Dx,yaa
I I2121bbI
x2dxdy
x2dyba4(2)Dy29xx2IIIx
2y2dxdy2
9 y2dy
.Iy
2x2dxdy2
92x2dy
9
9 (3)D為矩形閉區(qū)域x,y0xa0yb,求IxIy b
IxDydxdy0dx0ydy3.Iy3已知均勻矩形板()的長和寬分別為b和h,計算此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)醫(yī)療人力資源服務合同模板版B版
- 2025年度桉樹苗木物流配送與倉儲服務合同3篇
- 2024期房買賣合同協(xié)議書(含智能家居升級)3篇
- 2024攝影師與視覺設計公司勞動合同范本匯編3篇
- 2024擔保公司過橋合同協(xié)議
- 2024施工勞務合同-生態(tài)環(huán)保園建設版3篇
- 紅木知識培訓課件
- 2024年跨境電商出口業(yè)務預約合作合同3篇
- 正德職業(yè)技術學院《民航服務禮儀》2023-2024學年第一學期期末試卷
- 《財務部入職培訓》課件
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)宣傳海報
- 2024年市特殊教育學校工作總結(jié)范文(2篇)
- LNG采購框架合同范例
- 2024版機床維護保養(yǎng)服務合同3篇
- 課題1 金屬材料 教學設計 九年級化學下冊人教版2024
- 能源崗位招聘筆試題與參考答案(某大型國企)
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認定》
- 工業(yè)設計基礎知識單選題100道及答案解析
- 2024年貴州省公務員錄用考試《行測》真題及答案解析
- 山西省晉中市2023-2024學年高一上學期期末考試 化學 含解析
- 2024國家安全員資格考試題庫加解析答案
評論
0/150
提交評論