大一下微積分課件-第九章習題答案_第1頁
大一下微積分課件-第九章習題答案_第2頁
大一下微積分課件-第九章習題答案_第3頁
大一下微積分課件-第九章習題答案_第4頁
大一下微積分課件-第九章習題答案_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

二重積分的概念與性習題 xy2dxy3dDxy xy1Dxy2xy3,所以xy2dxy3d DDxy2d與xy3dDDDx22y122所圍成Dxy2xy3,所以xy2dxy3d lnxydlnxy2dD為三角形閉區(qū)域,三頂點分別為10,1,1,20

DDxy3x50y1D

(1)IDxyxydDxy0x10yD0xyxy2,所以0I(2)IDsin2xsin2ydDxy0x0yD0sin2xsin2y1,所以0I2(3)IDxy1dDxy0x10y解:在D上,1xy14,所以2ID(4)Ix24y29dDxyx2y2DD上,13x24y2925,所以52I

x2y2d,其中DxDx2y2d1D

x1,yD3x2ydDxy22D3x2yd2Dx33x2yy3dDxy0x10yD

3x2yDxcosxyd,其中D為頂點分別為00,0和,的三角解:DxcosxyDyexydxdyDx2y2xy1D

yexydxdy

1222

2yexy

xy2dxdyDxpy22pxp02

xy2dxdy

p

2p2

exydxdyDx0x1y0y1D exydxdy1dx1D

xsinxydxdyDx0xy0y2

xsinxydxdy

dx2xsinxydy

xsinxcosxdx Dsinxycosx2y2dxdyDx2y2DDxysinxycosx2y2dxdyDDx3sinx2y2dxdyDx2y22DDyx的奇函數(shù),所以x3sinx2y2dxdyDDD

1x2dxdyDx2y21212

dxdy1

dy121x21 1

dx3212DxydxdyDxy12xydxdy81dx1xxdy81xx2dx4 7D x2y2dxdyDx2y21x2y22x7D

解 x2y2dxdy

3

r3dr

203

r3dr DD

sinx2y2dxdyD為2x2y24sinx2y2dxdy2 2rsinr2dr

21cos21cos42

0 cos2cos42R2r2D R2x2y2dxdyDx2y2R2r2D

2

R2R2x2

dxdy

d

rdr

d D解:D

R2x2y2dxdyDx2y2RxR R2x2y2dxdy22d

R R2r2R2r222 1sin3d 30 Dx2xydxdyDxy1xy2yxy2xDxy解:做變換

x

u1

,x,y

111111

y

1

u,

1

1

11

xydxdy1 3du

41v3dv962313Dx3y3dxdyDx22yx23yxy2x2y22313Dx2

2

1

12解:做變換

xu3v3,則

x,y

u3

u3v3

1,所以

1

u,

2

21

yu3v 1u2v

3

7u

3v

3

u3v

ydxdy2

dv2

72du1442DxydDy

x,yx2 12 解:xyddx2xydy xxdx

03 Dxy2dDx2y24yD44

2

y4 Dxyd2

xydx22y2dy15 DexydDxy:xD

y1D10exyd0dxx1exydy1dx1xD100e2x1e1dx1ee2x1dxe1 Dx2y2xdDy2yxy2xD解 x2y2xd

2dyyx2y2xdx

219y33y2dy13

0 (5)D1xsinyd,其中D為頂點分別為00,10,12和0,1的梯形閉區(qū)域

1xsinyd1dxx11xsinydy11x1xcos1xdx 32sin2sin1cos2 2D(6)x2y2d,其中Dxy0ysinx0xD解 x2y2d

dxsinxx2y2dy

x2sinx1sin3xdx240

0 D(7)y23x6y9d,其中Dxyx2y2R2D2

x2

Rr D

3x6y9dD

9d

d0

92R49R2

20

d

9R 如果二重積分Dfx,ydxdy的被積函數(shù)fx,y是兩個函數(shù)f1x及f2y的乘積fxyf1xf2y,積分區(qū)Dx,yaxbcyd,證明此fx

ydxdybfxdx

dfydy.D

f1xf2ydxdybdxdf1xf2ydybdf2ydy b fxdxdfydy.b IDfx,ydyxy24xy x4解:I fx,ydyy x4

fx, 4xx2y2r2y0解I

r fx,ydy

r2 fx,y r2r2

r2yxx2y21x0x I1x

fx,ydy環(huán)形閉區(qū)域xy1x2y24;44 2 f444441 fx,41 1 fx, 4以O00,A20,B2,1,C0,1為頂點的矩形 I0dx0fxydy

f以O00,A10,B1,1為頂點的三角形 I0dx0fxydy0dyyf以O00A2a0B3aa,Caa為頂點的平行四邊形; I0

fx,ydy 0dy

fx,y I1

fx,yyx2xy2I

fx,y yx2,y4x2I

4 fx, xy2y2x2yx0 2 I dxxfx,ydy dxxfx,y 121220dyyfx,ydx1 fx,yy fxyDDyxyaxbba所圍成的閉區(qū)域。 adxafx,ydyadyyfx,y adxafxydyDfxyda

fx,yy(1)0

fx, 0dy0fxydx0dxxfx

2 fx,y 2解 fx,y 2

dx

fx,y

21(3)0 fx1解:0 fx,y22

fx,y(4)122x

fx,y解1dx2

fx,ydy0dy2

fx,y 1e1e

fx,ye解:1 fx,ydye

0 fx,

0dxsinxfx,y2 sin arcsin0dxsinxfxydy1dy2arcsinyfxydx0dyarcsin2

fx,y04(7)04

14dy4

fx,y

fx,

2 0dy 2

fx,ydx1 3 3

fx,y解:0 fx,ydx1

fx,y0dx

fx,y (10)0

fx,ydya 0dx0fxydy0

fx,y1(11)0 fx,y1 3y解:0 fx,ydy0 fx,y3yyay(12)0dyyfx,yy y1x解:0dyyfx,y1x

fx,11x

fx,y y 0dy0 fxdx0a證明: y y證明: y y D

emax

其中Dx0yayx圍成的

0dy0 fxd應用二重積分證明:由射線,與曲線rrD2 r 證明:Sdd rdr 求心臟線ra1cos12

S20a1cos

d 2

x2y2

fydxdyxx解:x2y2

fydxdyxx

22

frsinrdrrcosrcos

cos2ftan22222

DydxdyD0xyxa2x2y2b2ba0Darctan b

arctanb3 Dydxdyarctandarsindrarctan sin b3a3 1 12 DarctanxdxdyDxyRyDarctanxdxdy

a2x2y2

3/

,D:0xa,0y

a

3/224d

3/2dr Da2x2y2

a2r2

x2y2x

xy

ux1

xu1

vy

yv x,y 0

xydxdy uv

,由對稱性,u,v

x2y2x u2v22u2v22

uvdudv0,所

x2y2x

xydxdy

u2v22

dudv2

x4y4

x2y2 x2y2dxdy

2

4cos4sin4r3dr

x4y4

0cos4sin41 1tan d

1

dx

2 d(x ) 201tan4

01

0(x1)2 xxyuyvxDfxydxdy(Dx0y0xy1的公共部分)化為變量uv的累次積分。xy解:做變換

x

1

,x,y

111111

y

1

u,

1

1fx,ydxdy

1duf

,uv

1

1v 1y2pxy2qxx2ayx2by0pq0abx2

2

1

12

xu3v3

x,y,

u3

u3v3

1

1

u,

2

21 x

yu3v

u3v

u3v32313 baq2313所以Sddu1dv p 設平面薄片所占的閉區(qū)域D由直線xy2yxx軸所圍成,其面密度xyx2y2m

x2y2d

1dy2yx2y2dx

184y4y28y3dy4

x0,y0x1,y1z02x3yz解:V

62x3yd1

62x3ydy

192xdx711

0 x0,y0xy1z0x2y26z

1

4x3 VD6xyd0dx06xydy035x2x3dx6 zx22y2z62x2y2解:聯(lián)立z62x2

得投影區(qū)域Dxy0x2y2所以V

62x2y2x22y2d2d

263r2rdr 畫出積分區(qū)域,把積分Dfxydxdy Da(1)x,yx2y2a2aaDfxydxdy

d

frcos,rsin(2)x,yx2y2

fx,ydxdy

2 2

frcos,rsinb(3)xya2x2y2b2其中0abDfxydxdy

d

frcos,rsin(4)x,y0y1x,0x

fx,ydxdy2dcos

frcos,rsin(5)x,yx2y1,1x

fx,ydxdy4dcos2

frcos,rsin44

frcos,rsinrdr

34

cos2

frcos,rsin(6)x,yx2y2axa0,

fx,ydxdy

22

frcos,rsin(7)x,yx2y2byb0, Dfxydxdy0d

frcos,rsin(8)x2y24xx2y28xyxy2x Dfxydxdy4

frcos,rsin(9)x2y2axx2y2aya0所圍區(qū)域的公共部分。fx,ydxdy4d

a

frcos,rsinD24

frcos,rsin (1)0dx0fx,y dxfx,ydy4d

frcos,rsin24

frcos,rsin20(2)20

3xf

x2y2x解:2 3xfx

x2y2dy

3

2

fr

4

01

fx,y

fx,ydy2d frcos,rsinrdr.

cos(4)0

fx,y11

dx0fx,ydy

40

1cos2

frcos,rsin(1)0 xy

x2y2dy2d

2a

r3dr24a4cos4d

.2ax 2ax (2)0

x2y2 a

x2y2dy4dcosr2dr 32 2

3cos4a34

4

3ad a

a1dsin a1

dx

a2a

30cos

30(1

3

(1x 12

1

1x2 22

2 2

2

1201x 1x

1

1x 2

2 2

2

1201x 1x

1

1x a3ln32222

0x1 x1

x2

2

x2y22dy

40

cos2dr0

0cos2

d

2a(4)0aa

a2y2x2y2a2a2

解: x2y2dx2dr3dr d 0 fxy在閉區(qū)域Dxyx2y2yx0上連續(xù)fx,yfxy。Dfx,ydxdy

81x21x21x2D

fx,y

fx,ydxdy sin

1r2d1r

fx,ydxdyrdr

fx,y

所以

fx,ydxdy1.,fx,y

28

11x2Dex2y2dDx2y24Dx2

2

2e41 2 d0d0erdr0 de2 D(2)ln1x2y2dDx2y21D

1 ln 1ln1x2y2d2drln1r2dr2ln2

d

0

2

4(3)

arctanydDx2y24x2y21y0yxx

yd4d

rdr4

. 02 x2xDy2dDx2yxxy1 x y解: 2d1yx1x2

y2dy1

xdx

dDx1x2

1

1x2

11

2d2d

rdr 2D1x 01 2Dx2y2dDyxyxayay3aa0所圍成的閉D

3a

a3 Dxydadyyaxydxa2ayay3dy14a D x2y2d其中D為圓環(huán)形閉區(qū)域xya2x2y2b2D 解: x2y2d dr2dr b3a3 D2上一段弧0與直線 2 xyx2y2m

d2d

r3dr244d R2r2y0ykxk0zR2r2

R2x2R2x2

d d

rdr 3xOyx2y2axzx2y2

a

a4cos4

解:V

x2y2d

2

r3dr

d D(1)xy2sin2xydxdy,D為平行四邊形閉區(qū)域,它的四個頂點是D0,2,,2和0,1212xuv1212

xyxy

,則y

2u2

x,yu,

2 2

v2sin2

33sin2

xydxdy

dv

du Dx2y2dxdyDxy1xy2yxy4x所圍成Dxu,vxu,v

x,

1u2v122112213解:做變換y

,則y

u,

.,所以u uv2uv2 4 2

7lnDxydxdy1du12vdv1

ln2du 3

exydxdyDxyxy1xy

xu

x,y 解:做變換

y

,則y

u,v

,所以 u

exydxdy

eudv

y2

(4)Da2b2dxdy,其中Dx,y b2 xarcos解:做變換ybr

x,y,則r,

ab

arbr

,所以x2y2

b2dxdy0 Dxy4xy8xy35xy315

1 xy

xu2v2,x,

u2v 解:做變換

,則

xy3

y

12

u

1

3 2v2 dxdy8du151dv2ln 5Dyx3y4x3xy3x4y3

311

x

x,

u8v33解:做變換

u1

, u,

193 344

y

8v

u8v8所以

dxdy

1

434

dv18Dxy1x0y0cosxydxdy1

xy

xuv

xyxy

,則y

1211212u2

x,yu,

21.,所以 2xy

cosv dxdy

du dvusin1du

xy

11(1)

fxydxdy

fudu其中閉區(qū)域Dx,xuv

xy121211212

xyxy

,則y

2u2

x,yu,

12 .,所以1 2fxydxdy1du1fudv

fu1 1

faxbycdxdy

f

cdu, 1a2Dxyx2y21a21a2證明:做變換

a2b2 ,則a2b2a2b2 a2xaaaa2 a2

aubva2a2

x,yu,

y a2a2

a2faxbycdxdy

f

a2a2

cdv2

f

1a21a2習題Ifxyzdxdydz為三次積分,其中積分區(qū)域xyzxy10z0 Ifxyzdxdydz0

fx,y,zzx2y2z1I

fx,y,zdxdydz1 fx,y,z1 1

x2zx22y2z2x2I

fx,y,zdxdydz

fx,y,

x22 由曲面czxyc0a2

Ifxyzdxdydz

dy

fx,y,z

(1)z2dxdydz為兩個球:x2y2z2R2x2y2z22RzR0的x2y2z2R2解:由x2y2z22Rzz

R2

z2dxdydz

z2dxdy2

z2dxdyR

R R

2 2 2 2 2 2 2Rz dzR R dz02zlnx2y2z2

dxdydz,其中x2y2z21 xyz關于xOyzzlnx2y2z2

x2y2z2

dxdydzy2z2dxdydz,其中xOyy22xx軸旋轉(zhuǎn)而成的曲面x5所圍成的閉區(qū)域。

y2z2

。易得在yOzD0yzy2z210,所

y2

dxdydz

225y5y

2

y2z2

10

r2

2D5 yzdydz0d 52rdr321 11解:1

xyz

dxdydz,其中x0y0z0xyz111

dxdydz

0

1x0

xyz121 1

1dy

1ln21xln1xdx3ln

xy 2 (5)xydxdydz,其中zxyz0xy1

1x21

xydxdydz

xydz

x2y2dy

dx

xy2z3dxdydz,其中zxyyxx1z02

2

xx5

1 xyzdxdydz0dx0

xyzdz0

dy028dx364(7)xyzdxdydz,其中x2y2z21x0y0z0

xyzdxdydz2d2d

5sin3cossincosd1

xyzsinxyzdxdydz,其中x0,y0z0xyz2

x

xyzsinxyzdxdydz2dx

dy

2 2dx xyxysinxydy2

xxsinx

(9)lx2my2nz2dxdydz,其中x2y2z2a2所圍成的閉區(qū)域(lm為常數(shù)

lx2my2nz2dxdydz

lmnx2y2z2 lm

d0d0

sind

lmn.(10)

x2y2dxdydz,:x2y2z2,0z h

x2x2

dxdydz

d0drrrdz6(11)xydxdydz,:xy2z,z

2

ydxdydzddrr2rdz3 2

x2y2dxdydz,:x2y2z2

x2y2dxdydz

2x2y2z2 22dda4sind8a53

dxdydz,x2y2a2z0zhh0所圍成。x2x2y2

2 2

3

dxdydz

d

dz

ah2

a. x2y2

r2

3 (14)zdxdydz,:x2y2z22,x2y2x2y2z2解:由x2y2

z1 zdxdydz

dzDzdxdy0dzDzdxdy

1z2dz

22z2zdz7 (15)z2dxdydz,:x2y2z2a2,x2y2axaz2dxdydz

2

a

z2rdz

2

acos

ra2r22

acos

3

a2aa2

3334a5 822d

ra2r22dr22 1sin5d

0

15(16)

x2y2zdxdydz其中由2zx2y2z22

2

r4

xyzdxdydz ddrr2zrcossindz d28

cos

0 2128cos2sin2d32 R2x2x2y2z2R2x2

z

x2x2

x2y2z2dxdydz

d4d

4sind

2

2. z3dxdydz,:x2y2z2R2,x0,y0,z

z3dxdydz2d2d

5cos3sind

.

x2y2z2dxdydz其中x2y2z2z

x2y2z2dxdydz

d2d

3sind cos4sin d2 d xydxdydz,:axyzb,z

x2y2dxdydz

d2d

4sin3d

b5a5 x2y2 dxdydz其中xyz2x2y2

dxdydz

d2d

2a

sind1 x2y2 1 d22a2cos2sind

.

dxdydz,:a2x2y2z2b2bax2y2z21

b

1

2dxdydz

d0d

2d4 xyz

b(23)

xyzdxdydz,:x2y2z2

x2x2

xyzdxdydz

zdxdydz

d4

2a

3cossind d44a4cos5sind

. (24)

1x2y2z2dxdydz,:x2y2z2 1x21x2y21

dxdydz

d0d

sind (25)

dxdydz, xasincos解:做變換ybsinsin1z1

abc

1a2b2c2dxdydz

d0d

sin 4

xyzdxdydz,:xa2yb2zc2R2ux

uvwabc解:做變換vybwz

abcdudvdw

3

abc.設函數(shù)fx連續(xù)

fx2y2z2dvFt ,

fx2y2d fx2y2dGt ,tt

fx2dx其中txyzx2y2z2t2Dtxyx2y2t討論Ft在區(qū)間0內(nèi)的單調(diào)性證明:當t0Ft2Gt(1)

fx2y2z2dv

2 tf22sindFt t 0 00

fx2y2d

0

tfr202tf22d0 0tfr20F't

2ft2

tfr2rdr2ft200tfr2rdr00

tf22d

2ft2ttfr2trrdr0tfr2rdr0 ,所以Ft在區(qū)間0內(nèi)單調(diào)上升 fx2y2

tfr2

tfr2(2)Gt

Dt t

tfx2

2fx2

fx2 .令Httfr2r2drtfr2drtfr2rdr2,則H0 .令

。當t0時, H'tft2t2tfr2drft2tfr2r2dr2ft2ttfr

,所以0ft2ttr0

fr2drtfr2r2drtfr2drtfr2rdr2此等價于Ft2Gt 設有一物體,占有空間閉區(qū)域xyz0x10y10z1,在點xyzxyzxyzmxyz如果三重積分fxy

的被積函數(shù)fxyz

是三個函數(shù)f1x,f2y,f3z

fx,y,zf1xf2yf3z

x,y,zaxbcyd,l bfx,y,zdxdydzb bdxdf1xf2 daf1xdxcf2y

1xyz

,其中x0,y0z0xyz1

3 0dx

21x計算xzdxdydz,其中z0zyy1yx2所圍成的閉yOzx是奇函數(shù),所以xzdxdydz

zdxdydz其中zx2x2

zhR0h0 0 解 z

x2y2z2dv其中x2y2z21

x2y2z2dv2dd14sind4 (2)zdv其中閉區(qū)域由不等式x2y2za2a2x2y2z2所確定

zdv

d4d

2a

3cossind

d44a4cos5sind

7. (1)

xydv其中x2y21z1z0x0y0

xydv2d

r3cossindz 2x2y2dv,其中為由曲面4z225x2y2z52x2y2dv

0

0

5r3dz8求下列區(qū)域V(1)V:x2y2a2,z0,zmxm

解:V

dxdydz

2

rdz

2

mr2cosdr 3

(2)V:a2b2c22,b2c2aax2y2z2 解:由

xay2z2

x2VVdxdydz dxDdydz0

bc2

2x427

a 6 (3)Vx2y2a2y2z2a2z2x2a2所圍成(9.33VVdxdydz

1sin34 4 cos(1)z6x2y2zx2x2

x2y2解:由

z26Vdxdydz0(2)x2y2z22aza0x2y2z2(z軸的部分x2y2z2解:由x2y2

zaVdxdydz0x2x2解:由

zx2y2x2y2z11zVdxdydz0dzDz55x2解:由

x2y24z5x2y2z1

xdydz

ay2a2az,x2y2 2

,z0Vdxdydz02a3a3sin20 y2a2az,x2y2ax,z0a r2sin2 V dxdydz

2

a

rdz

2

acosrarsin

a3cos2 a3sin2cos4

d

2 x2y2az4a2x2y2z24az解:由x2y2z2

za

zVdxdydzz

dzDdxdy

4az

azdz 232a39a337a3.所以上下之比為27 求球體ra位于錐面3

和23解:V

dxdydz

d3d

2sind

3.3 3x2y2z22zx2y2x2y2z212解:由zx212

z1V

dxdydz

dxdy0zdz

22z2dz8276zR的球體,在其上任意一點的密度的大小與這點到球心的距離成正6z 解mdvkx2y2z2dxdydzddkr3sindrk fxy

為由曲面zx2y2yx2y1z0 x2解 fx,y,zdxdydz fx,y,z9.4

習題x2y2z2a2x2y2ax內(nèi)部的那部分面積。11 22ax ax 1

a

r dxdy4a2d

a2x2

a2r4a2d

a

dr24a a2r x2x2y2z22x2x2x2y2z2x2

所割a

x2y2

得za.所以球面x2y2z22az被錐面z 所恰為半球面,面積為2旋轉(zhuǎn)拋物面2zx2y2x2y21解S

1x2y2dxdy2d

1r2rdr2223曲面azxyx2y2a231a1aay x

3S3

dxdy

d

rdr

22(4)x2y2R2x2z2R2y2z2R2所圍成的立體的表面;S

112R2x2

R2R2r2cos2

dxdy

4R R

224R24 d24222

2R2.0cos cos(5)zarctanyx2y21xS

1 1x2 1y 1y22 x2 x2

11rdr

2ln

22 2x2求錐面z 被柱面z22xx2解:由

x2y2

解得x

2y2

,所以在xOy面上的投影為1xyx 1xyx x S

dxdy

22

222cos2d 2x2y2R2x2z2R2S

dxdy

R2R

dr12R2x2R12R2x2R2r2cos2 S

dxdy 11ab c c a2b2a2c2Dy

2pxxx0y02222 23205x 0 23205

03x0

x00 0

x2x

x0

22x0020

1

32y

02322320x0D為半橢圓形閉區(qū)域x,y

21,y a解:x0;y a

a Dacosbcos0abd2d2 x

Dyx2yx所圍成,它在點xy處的面x,yx2y,求該薄片的質(zhì)心。 xD

x2

0

xx2 1x1設有一等腰直角三角形薄片,腰長為a,各點處的面密度等于該點到直角頂點的距離的x

xx2y2

x2y2(1)z2x2y2,zx0y0z

a2(2)z A2x2y2,za2x0;y

d2d

3sincosdz

32A3a33A4a4 3A

AaAaa32A3a3 3

A2Aa(3)zx2y2,xya,x0,y0,z a x2 a xxdxdydz0a

xdz152a;y2aaa

0

a

x2 a x2

az a

0

a

x2 aax0;y

x2y2z2

d2d

2R

5cossind

z

x2y2z2dxdydz

4 2R4

32R54

d2d sind

R2 3 a,則0y

,可解得a 3 x2x2求質(zhì)量分布均勻的半個旋轉(zhuǎn)橢球體xyz

21z0

b 0 0 Dz

x0y0z

2a2b8 求高為h,底半徑為az ha2hz2z

0dzD

12 x0;y0;z

a2h4 設物體占據(jù)空間區(qū)域V0x10y10z1,在點Mxyz處密度為xyzmxyzdxdydzdxdyxyzdz3 xxxyzdxdydz0dx0dy0xxyzdz65.y5;z5 0 2 P0的距離的平方成正比(k,求此物質(zhì)球體質(zhì)心的位x0;y R2

2z

R2

2

R2 dd

k3cossin2sin2cos d

2

R2 ddk2sin2sin2cos

d 154R

2 設均勻薄片(面密度為常數(shù)1)D(1)Dx,yaa

I I2121bbI

x2dxdy

x2dyba4(2)Dy29xx2IIIx

2y2dxdy2

9 y2dy

.Iy

2x2dxdy2

92x2dy

9

9 (3)D為矩形閉區(qū)域x,y0xa0yb,求IxIy b

IxDydxdy0dx0ydy3.Iy3已知均勻矩形板()的長和寬分別為b和h,計算此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論