版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列關(guān)于拋物線y=2x2﹣3的說法,正確的是()A.拋物線的開口向下B.拋物線的對稱軸是直線x=1C.拋物線與x軸有兩個交點D.拋物線y=2x2﹣3向左平移兩個單位長度可得拋物線y=2(x﹣2)2﹣32.已知甲、乙兩地相距100(km),汽車從甲地勻速行駛到乙地,則汽車行駛的時間(t)與行駛速度v(km/h)的函數(shù)關(guān)系圖象大致是().A. B. C. D.3.的值等于()A. B. C.1 D.4.如圖,是圓的直徑,直線與圓相切于點,交圓于點,連接.若,則的度數(shù)是()A. B. C. D.5.如圖所示,將矩形紙片先沿虛線AB按箭頭方向向右對折,接著對折后的紙片沿虛線CD向下對折,然后剪下一個小三角形,再將紙片打開,則打開后的展開圖是()A. B. C. D.6.驗光師測得一組關(guān)于近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)的對應(yīng)數(shù)據(jù)如下表.根據(jù)表中數(shù)據(jù),可得y關(guān)于x的函數(shù)表達式為近視眼鏡的度數(shù)y(度)2002504005001000鏡片焦距x(米)0.500.400.250.200.10A. B. C. D.7.如圖所示,河堤橫斷面迎水坡AB的坡比是1:3,坡高BC=20,則坡面AB的長度()A.60 B.100 C.50 D.208.如圖,P為平行四邊形ABCD的邊AD上的一點,E,F(xiàn)分別為PB,PC的中點,△PEF,△PDC,△PAB的面積分別為S,,.若S=3,則的值為()A.24 B.12 C.6 D.39.在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(
)A.9人 B.10人 C.11人 D.12人10.點A(﹣3,y1),B(0,y2),C(3,y3)是二次函數(shù)y=﹣(x+2)2+m圖象上的三點,則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3 B.y1=y(tǒng)3<y2 C.y3<y2<y1 D.y1<y3<y2二、填空題(每小題3分,共24分)11.如圖,在中,在邊上,,是的中點,連接并延長交于,則______.12.如圖,四邊形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若△PAB與△PCD是相似三角形,則BP的長為_____________13.把一元二次方程x(x+1)=4(x﹣1)+2化為一般形式為_____.14.等邊三角形ABC繞著它的中心,至少旋轉(zhuǎn)______度才能與它本身重合15.將函數(shù)y=5x2的圖象向左平移2個單位,再向上平移3個單位,所得拋物線對應(yīng)函數(shù)的表達式為__________.16.在平面直角坐標(biāo)系中,已知點,以原點為位似中心,相似比為.把縮小,則點的對應(yīng)點的坐標(biāo)分別是_____,_____.17.如圖,轉(zhuǎn)盤中6個扇形的面積相等,任意轉(zhuǎn)動轉(zhuǎn)盤1次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針指向的數(shù)小于5的概率為_____.18.若,且,則=______.三、解答題(共66分)19.(10分)港珠澳大橋是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知≈1.732,tan20°≈0.36,結(jié)果精確到0.1)20.(6分)如圖,AB是⊙O的直徑,C是⊙O上一點,且AC=2,∠CAB=30°,求圖中陰影部分面積.21.(6分)如圖,已知拋物線y=﹣x2+bx+3的對稱軸為直線x=﹣1,分別與x軸交于點A,B(A在B的左側(cè)),與y軸交于點C.(1)求b的值;(2)若將線段BC繞點C順時針旋轉(zhuǎn)90°得到線段CD,問:點D在該拋物線上嗎?請說明理由.22.(8分)如圖1,直線y=2x+2分別交x軸、y軸于點A、B,點C為x軸正半軸上的點,點D從點C處出發(fā),沿線段CB勻速運動至點B處停止,過點D作DE⊥BC,交x軸于點E,點C′是點C關(guān)于直線DE的對稱點,連接EC′,若△DEC′與△BOC的重疊部分面積為S,點D的運動時間為t(秒),S與t的函數(shù)圖象如圖2所示.(1)VD,C坐標(biāo)為;(2)圖2中,m=,n=,k=.(3)求出S與t之間的函數(shù)關(guān)系式(不必寫自變量t的取值范圍).23.(8分)如圖,已知拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(m,0)兩點,與y軸相交于點C(0,﹣3),拋物線的頂點為D.(1)求B、D兩點的坐標(biāo);(2)若P是直線BC下方拋物線上任意一點,過點P作PH⊥x軸于點H,與BC交于點M,設(shè)F為y軸一動點,當(dāng)線段PM長度最大時,求PH+HF+CF的最小值;(3)在第(2)問中,當(dāng)PH+HF+CF取得最小值時,將△OHF繞點O順時針旋轉(zhuǎn)60°后得到△OH′F′,過點F′作OF′的垂線與x軸交于點Q,點R為拋物線對稱軸上的一點,在平面直角坐標(biāo)系中是否存在點S,使得點D、Q、R、S為頂點的四邊形為菱形,若存在,請直接寫出點S的坐標(biāo),若不存在,請說明理由.24.(8分)如圖,在△ABC中,AD是BC邊上的中線,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.(1)求證:△ABC∽△FCD;(2)過點A作AM⊥BC于點M,求DE:AM的值;(3)若S△FCD=5,BC=10,求DE的長.25.(10分)如圖,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點E.連接AC、OC、BC.(1)求證:∠ACO=∠BCD.(2)若EB=8cm,CD=24cm,求⊙O的直徑.26.(10分)如圖,一位測量人員,要測量池塘的寬度的長,他過A、B兩點畫兩條相交于點的射線,在射線上取兩點D、E,使,若測得DE=37.2米,他能求出A、B之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設(shè)計一個可行方案.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】根據(jù)二次函數(shù)的性質(zhì)及二次函數(shù)圖象“左加右減,上加下減”的平移規(guī)律逐一判斷即可得答案.【詳解】∵2>0,∴拋物線y=2x2﹣3的開口向上,故A選項錯誤,∵y=2x2﹣3是二次函數(shù)的頂點式,∴對稱軸是y軸,故B選項錯誤,∵-3<0,拋物線開口向上,∴拋物線與x軸有兩個交點,故C選項正確,拋物線y=2x2﹣3向左平移兩個單位長度可得拋物線y=2(x+2)2﹣3,故D選項錯誤,故選:C.【點睛】此題考查二次函數(shù)的性質(zhì)及二次函數(shù)圖象的平移,熟練掌握二次函數(shù)的性質(zhì)及“左加右減,上加下減”的平移規(guī)律是解題關(guān)鍵.2、C【分析】根據(jù)題意寫出t與v的關(guān)系式判斷即可.【詳解】根據(jù)題意寫出t與v的關(guān)系式為,故選C.【點睛】本題是對反比例函數(shù)解析式和圖像的考查,準(zhǔn)確寫出解析式并判斷其圖像是解決本題的關(guān)鍵.3、A【分析】根據(jù)特殊角的三角函數(shù)值,即可得解.【詳解】.故選:A.【點睛】此題屬于容易題,主要考查特殊角的三角函數(shù)值.失分的原因是沒有掌握特殊角的三角函數(shù)值.4、B【分析】根據(jù)切線的性質(zhì)可得:∠BAP=90°,然后根據(jù)三角形的內(nèi)角和定理即可求出∠AOC,最后根據(jù)圓周角定理即可求出.【詳解】解:∵直線與圓相切∴∠BAP=90°∵∴∠AOC=180°-∠BAP-∠P=48°∴故選B.【點睛】此題考查的是切線的性質(zhì)和圓周角定理,掌握切線的性質(zhì)和同弧所對的圓周角是圓心角的一半是解決此題的關(guān)鍵.5、D【分析】根據(jù)第三個圖形是三角形的特點及折疊的性質(zhì)即可判斷.【詳解】∵第三個圖形是三角形,∴將第三個圖形展開,可得,即可排除答案A,∵再展開可知兩個短邊正對著,∴選擇答案D,排除B與C.故選D.【點晴】此題主要考查矩形的折疊,解題的關(guān)鍵是熟知折疊的特點.6、A【分析】直接利用已知數(shù)據(jù)可得xy=100,進而得出答案.【詳解】解:由表格中數(shù)據(jù)可得:xy=100,故y關(guān)于x的函數(shù)表達式為:.故選A.【點睛】此題主要考查了反比例函數(shù)的應(yīng)用,正確得出函數(shù)關(guān)系式是解題關(guān)鍵.7、D【分析】在Rt△ABC中,已知坡面AB的坡比以及鉛直高度BC的值,通過解直角三角形即可求出斜面AB的長.【詳解】Rt△ABC中,BC=20,tanA=1:3;∴AC=BC÷tanA=60,∴AB20.故選:D.【點睛】本題考查了學(xué)生對坡度坡角的掌握及三角函數(shù)的運用能力,熟練運用勾股定理是解答本題的關(guān)鍵.8、B【詳解】過P作PQ∥DC交BC于點Q,由DC∥AB,得到PQ∥AB,∴四邊形PQCD與四邊形APQB都為平行四邊形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF為△PCB的中位線,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比為1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP==1.故選B.9、C【分析】設(shè)參加酒會的人數(shù)為x人,根據(jù)每兩人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設(shè)參加酒會的人數(shù)為x人,依題可得:
x(x-1)=55,
化簡得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案為C.【點睛】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題中的等量關(guān)系列出方程.10、C【解析】先確定拋物線的對稱軸,然后比較三個點到對稱軸的距離,再利用二次函數(shù)的性質(zhì)判斷對應(yīng)的函數(shù)值的大小.【詳解】二次函數(shù)y=﹣(x+2)2+m圖象的對稱軸為直線x=﹣2,又a=-1,二次函數(shù)開口向下,∴x<-2時,y隨x增大而增大,x>-2時,y隨x增大而減小,而點A(﹣3,y1)到直線x=﹣2的距離最小,點C(3,y3)到直線x=﹣2的距離最大,所以y3<y2<y1.故選:C.【點睛】此題主要考查二次函數(shù)的圖像,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì).二、填空題(每小題3分,共24分)11、【分析】過O作BC的平行線交AC與G,由中位線的知識可得出AD:DC=1:2,根據(jù)已知和平行線分線段成比例得出AD=DG=GC,AG:GC=2:1,AO:OE=2:1,再由同高不同底的三角形中底與三角形面積的關(guān)系可求出BE:EC的比.【詳解】解:如圖,過O作OG∥BC,交AC于G,
∵O是BD的中點,
∴G是DC的中點.
又AD:DC=1:2,
∴AD=DG=GC,
∴AG:GC=2:1,AO:OE=2:1,
∴S△AOB:S△BOE=2
設(shè)S△BOE=S,S△AOB=2S,又BO=OD,
∴S△AOD=2S,S△ABD=4S,
∵AD:DC=1:2,
∴S△BDC=2S△ABD=8S,S四邊形CDOE=7S,
∴S△AEC=9S,S△ABE=3S,
∴==【點睛】本題考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.12、1或2【分析】設(shè)BP=x,則CP=BC-BP=3-x,易證∠B=∠C=90°,根據(jù)相似三角形的對應(yīng)頂點分類討論:①若△PAB∽△PDC時,列出比例式即可求出BP;②若△PAB∽△DPC時,原理同上.【詳解】解:設(shè)BP=x,則CP=BC-BP=3-x∵AB∥CD,∠B=90°,∴∠C=180°-∠B=90°①若△PAB∽△PDC時∴即解得:x=1即此時BP=1;②若△PAB∽△DPC時∴即解得:即此時BP=1或2;綜上所述:BP=1或2.故答案為:1或2.【點睛】此題考查的是相似三角形的判定及性質(zhì),掌握相似三角形的對應(yīng)邊成比例列方程是解決此題的關(guān)鍵.13、x2﹣3x+2=1.【分析】按照去括號、移項、合并同類項的步驟化為ax2+bx+c=1的形式即可.【詳解】x2+x=4x﹣4+2,x2﹣3x+2=1.故答案為:x2﹣3x+2=1.【點睛】此題考查了一元二次方程的一般形式,一元二次方程的一般形式為ax2+bx+c=1(a≠1).其中a是二次項系數(shù),b是一次項系數(shù),c是常數(shù)項.14、120【分析】根據(jù)等邊三角形的性質(zhì),結(jié)合圖形可以知道旋轉(zhuǎn)角度應(yīng)該等于120°.【詳解】解:等邊△ABC繞著它的中心,至少旋轉(zhuǎn)120度能與其本身重合.【點睛】本題考查旋轉(zhuǎn)對稱圖形及等邊三角形的性質(zhì).15、y=5(x+2)2+3【分析】根據(jù)二次函數(shù)平移的法則求解即可.【詳解】解:由二次函數(shù)平移的法則“左加右減”可知,二次函數(shù)y=5x2的圖象向左平移2個單位得到y(tǒng)=,由“上加下減”的原則可知,將二次函數(shù)y=的圖象向上平移3個單位可得到函數(shù)y=,故答案是:y=.【點睛】本題主要考查二次函數(shù)平移的法則,其中口訣是:“左加右減”、“上加下減”,注意數(shù)字加減的位置.16、(-1,2)或(1,-2);(-3,-1)或(3,1)【分析】利用以原點為位似中心,相似比為k,位似圖形對應(yīng)點的坐標(biāo)的比等于k或?k,分別把A,B點的橫縱坐標(biāo)分別乘以或?即可得到點B′的坐標(biāo).【詳解】∵以原點O為位似中心,相似比為,把△ABO縮小,∴的對應(yīng)點A′的坐標(biāo)是(-1,2)或(1,-2),點B(?9,?3)的對應(yīng)點B′的坐標(biāo)是(?3,?1)或(3,1),故答案為:(-1,2)或(1,-2);(-3,-1)或(3,1).【點睛】本題考查了位似變換:在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或?k.17、【解析】試題解析:∵共6個數(shù),小于5的有4個,∴P(小于5)==.故答案為.18、12【分析】設(shè),則a=2k,b=3k,c=4k,由求出k值,即可求出c的值.【詳解】解:設(shè),則a=2k,b=3k,c=4k,∵a+b-c=3,∴2k+3k-4k=3,∴k=3,∴c=4k=12.故答案為12.【點睛】此題主要考查了比例的性質(zhì),利用等比性質(zhì)是解題關(guān)鍵.三、解答題(共66分)19、斜拉索頂端A點到海平面B點的距離AB約為93.7米.【分析】在Rt△ACD和Rt△BCD中,根據(jù)銳角三角函數(shù)求出AD、BD,即可求出AB.【詳解】如圖,由題意得,在△ABC中,CD=100,∠ACD=30°,∠DCB=20°,CD⊥AB,在Rt△ACD中,AD=CD?tan∠ACD=100×≈57.73(米),在Rt△BCD中,BD=CD?tan∠BCD≈100×0.36≈36(米),∴AB=AD+DB=57.73+36=93.73≈93.7(米),答:斜拉索頂端A點到海平面B點的距離AB約為93.7米.【點睛】本題考查了解直角三角形的應(yīng)用-仰角俯角問題問題,掌握銳角三角函數(shù)的意義是解題的關(guān)鍵.20、+【分析】根據(jù)扇形的面積公式進行計算即可.【詳解】解:連接OC且過點O作AC的垂線,垂足為D,如圖所示.∵OA=OC∴AD=1在Rt△AOD中∵∠DAO=30°∴∴OD=,∴由OA=OC;∠DAO=30可得∠COB=60°∴S扇形BOC=∴S陰影=S△AOC+S扇形BOC=+【點睛】本題考查扇形的面積公式,熟記扇形的面積公式是解題的關(guān)鍵.21、(1)b=﹣2;(2)點D不在該拋物線上,見解析【分析】(1)根據(jù)拋物線的對稱軸公式,可求出b的值,(2)確定函數(shù)關(guān)系式,進而求出與x軸、y軸的交點坐標(biāo),由旋轉(zhuǎn)可得全等三角形,進而求出點D的坐標(biāo),代入關(guān)系式驗證即可.【詳解】解:(1)∵拋物線y=﹣x2+bx+3的對稱軸為直線x=﹣1,∴=﹣1,∴b=﹣2;(2)當(dāng)x=0時,y=3,因此點C(0,3),即OC=3,當(dāng)y=0時,即﹣x2+bx+3=0,解得x1=﹣3,x2=1,因此OB=1,OA=3,如圖,過點D作DE⊥y軸,垂足為E,由旋轉(zhuǎn)得,CB=CD,∠BCD=90°,∵∠OBC+∠BCO=90°=∠BCO+∠ECD,∴∠OBC=∠ECD,∴△BOC≌△CDE(AAS),∴OB=CE=1,OC=DE=3,∴D(﹣3,2)當(dāng)x=﹣3時,y=﹣9+6+3=0≠2,∴點D不在該拋物線上.【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,掌握對稱軸的求解公式以及看一個點是否在二次函數(shù)上,只需要把點代入二次函數(shù)解析式看等式是否成立即可.22、(1)點D的運動速度為1單位長度/秒,點C坐標(biāo)為(4,0).(2);;.(3)①當(dāng)點C′在線段BC上時,S=t2;②當(dāng)點C′在CB的延長線上,S=?t2+t?;③當(dāng)點E在x軸負(fù)半軸,S=t2?4t+1.【分析】(1)根據(jù)直線的解析式先找出點B的坐標(biāo),結(jié)合圖象可知當(dāng)t=時,點C′與點B重合,通過三角形的面積公式可求出CE的長度,結(jié)合勾股定理可得出OE的長度,由OC=OE+EC可得出OC的長度,即得出C點的坐標(biāo),再由勾股定理得出BC的長度,根據(jù)CD=BC,結(jié)合速度=路程÷時間即可得出結(jié)論;(2)結(jié)合D點的運動以及面積S關(guān)于時間t的函數(shù)圖象的拐點,即可得知當(dāng)“當(dāng)t=k時,點D與點B重合,當(dāng)t=m時,點E和點O重合”,結(jié)合∠C的正余弦值通過解直角三角形即可得出m、k的值,再由三角形的面積公式即可得出n的值;(3)隨著D點的運動,按△DEC′與△BOC的重疊部分形狀分三種情況考慮:①通過解直角三角形以及三角形的面積公式即可得出此種情況下S關(guān)于t的函數(shù)關(guān)系式;②由重合部分的面積=S△CDE?S△BC′F,通過解直角三角形得出兩個三角形的各邊長,結(jié)合三角形的面積公式即可得出結(jié)論;③通過邊與邊的關(guān)系以及解直角三角形找出BD和DF的值,結(jié)合三角形的面積公式即可得出結(jié)論.【詳解】(1)令x=0,則y=2,即點B坐標(biāo)為(0,2),∴OB=2.當(dāng)t=時,B和C′點重合,如圖1所示,此時S=×CE?OB=,∴CE=,∴BE=.∵OB=2,∴OE=,∴OC=OE+EC=+=4,BC=,CD=,÷=1(單位長度/秒),∴點D的運動速度為1單位長度/秒,點C坐標(biāo)為(4,0).故答案為:1單位長度/秒;(4,0);(2)根據(jù)圖象可知:當(dāng)t=k時,點D與點B重合,此時k==2;當(dāng)t=m時,點E和點O重合,如圖2所示.sin∠C===,cos∠C=,OD=OC?sin∠C=4×=,CD=OC?cos∠C=4×=.∴m==,n=BD?OD=×(2?)×=.故答案為:;;2.(3)隨著D點的運動,按△DEC′與△BOC的重疊部分形狀分三種情況考慮:①當(dāng)點C′在線段BC上時,如圖3所示.此時CD=t,CC′=2t,0<CC′≤BC,∴0<t≤.∵tan∠C=,∴DE=CD?tan∠C=t,此時S=CD?DE=t2;②當(dāng)點C′在CB的延長線上,點E在線段OC上時,如圖4所示.此時CD=t,BC′=2t?2,DE=CD?tan∠C=t,CE==t,OE=OC?CE=4?t,∵,即,解得:<t≤.由(1)可知tan∠OEF==,∴OF=OE?tan∠OEF=t,BF=OB?OF=,∴FM=BF?cos∠C=.此時S=CD?DE?BC′?FM=?;③當(dāng)點E在x軸負(fù)半軸,點D在線段BC上時,如圖5所示.此時CD=t,BD=BC?CD=2?t,CE=t,DF=,∵,即,∴<t≤2.此時S=BD?DF=×2×(2?t)2=t2?4t+1.綜上,當(dāng)點C′在線段BC上時,S=t2;當(dāng)點C′在CB的延長線上,S=?t2+t?;當(dāng)點E在x軸負(fù)半軸,S=t2?4t+1.【點睛】本題考查了勾股定理、解直角三角形以及三角形的面積公式,解題的關(guān)鍵是:(1)求出BC、OC的長度;(2)根據(jù)圖象能夠了解當(dāng)t=m和t=k時,點DE的位置;(3)分三種情況求出S關(guān)于t的函數(shù)關(guān)系式.本題屬于中檔題,(1)(2)難度不大;(3)需要畫出圖形,利用數(shù)形結(jié)合,通過解直角三角形以及三角形的面積公式找出S關(guān)于t的函數(shù)解析式.23、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐標(biāo)為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)【分析】(1)將A(﹣1,0)、C(0,﹣3)代入y=x2+bx+c,待定系數(shù)法即可求得拋物線的解析式,再配方即可得到頂點D的坐標(biāo),根據(jù)y=0,可得點B的坐標(biāo);(2)根據(jù)BC的解析式和拋物線的解析式,設(shè)P(x,x2﹣2x﹣3),則M(x,x﹣3),表示PM的長,根據(jù)二次函數(shù)的最值可得:當(dāng)x=時,PM的最大值,此時P(,﹣),進而確定F的位置:在x軸的負(fù)半軸了取一點K,使∠OCK=30°,過F作FN⊥CK于N,當(dāng)N、F、H三點共線時,如圖2,F(xiàn)H+FN最小,即PH+HF+CF的值最小,根據(jù)含30°角的直角三角形的性質(zhì),即可得結(jié)論;(3)先根據(jù)旋轉(zhuǎn)確定Q的位置,與點A重合,根據(jù)菱形的判定畫圖,分4種情況討論:分別以DQ為邊和對角線進行討論,根據(jù)菱形的邊長相等和平移的性質(zhì),可得點S的坐標(biāo).【詳解】(1)把A(﹣1,0),點C(0,﹣3)代入拋物線y=x2+bx+c,得:,解得:,∴拋物線的解析式為:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴頂點D(1,﹣4),當(dāng)y=0時,x2﹣2x﹣3=0,解得:x=3或﹣1,∴B(3,0);(2)∵B(3,0),C(0,﹣3),設(shè)直線BC的解析式為:y=kx+b,則,解得:,∴直線BC的解析式為:y=x﹣3,設(shè)P(x,x2﹣2x﹣3),則M(x,x﹣3),∴PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+,當(dāng)x=時,PM有最大值,此時P(,﹣),在x軸的負(fù)半軸了取一點K,使∠OCK=30°,過F作FN⊥CK于N,∴FN=CF,當(dāng)N、F、H三點共線時,如圖1,F(xiàn)H+FN最小,即PH+HF+CF的值最小,∵Rt△OCK中,∠OCK=30°,OC=3,∴OK=,∵OH=,∴KH=+,∵Rt△KNH中,∠KHN=30°,∴KN=KH=,∴NH=KN=,∴PH+HF+CF的最小值=PH+NH==;(3)Rt△OFH中,∠OHF=30°,OH=,∴OF=OF'=,由旋轉(zhuǎn)得:∠FOF'=60°∴∠QOF'=30°,∴在Rt△QF'O中,QF'=OF'÷=÷=,OQ=2QF'=2×=1,∴Q與A重合,即Q(﹣1,0)分4種情況:①如圖2,以QD為邊時,由菱形和拋物線的對稱性可得S(3,0);②如圖3,以QD為邊時,由勾股定理得:AD=,∵四邊形DQSR是菱形,∴QS=AD=2,QS∥DR,∴S(﹣1,﹣2);③如圖4,同理可得:S(﹣1,2);④如圖5,作AD的中垂線,交對稱軸于R,可得菱形QSDR,∵A(﹣1,0),D(1,﹣4),∴AD的中點N的坐標(biāo)為(0,﹣2),且AD=2,∴DN=,cos∠ADR=,∴DR=,∴QS=DR=,∴S(﹣1,﹣);綜上,S的坐標(biāo)為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣).【點睛】本題主要考查二次函數(shù)和幾何圖形的綜合,添加合適的輔助線構(gòu)造含30°角的直角三角形,利用菱形的判定定理,進行分類討論,是解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)術(shù)出版行業(yè)市場調(diào)研分析報告
- 大數(shù)據(jù)分析及應(yīng)用項目教程(Spark SQL)(微課版) 教案全套 許慧 單元1-6 大數(shù)據(jù)分析概述-Zepplin數(shù)據(jù)可視化
- 藥用薄荷市場分析及投資價值研究報告
- 自推進式掃路機細(xì)分市場深度研究報告
- 冷鏈果蔬物流行業(yè)市場調(diào)研分析報告
- 移動電話用屏幕保護膜市場發(fā)展前景分析及供需格局研究預(yù)測報告
- 電子貨幣收款機細(xì)分市場深度研究報告
- 電子閃光器開關(guān)市場分析及投資價值研究報告
- 襯衫袖扣市場分析及投資價值研究報告
- 繪畫便箋簿項目營銷計劃書
- 廢氣設(shè)施施工方案
- 液相色譜法和高效液相色譜法
- 消防安全評估投標(biāo)方案
- 灰壩施工組織設(shè)計
- 道法22.第10課第二框《履行遵紀(jì)守法義務(wù)》
- 安徽省蕪湖市部分學(xué)校2023-2024學(xué)年九年級上學(xué)期期中語文試題(含答案)
- 學(xué)校人事管理制度改革方案
- 韓國《寄生蟲》電影鑒賞解讀
- 三對三籃球賽記錄表
- 石油和天然氣輸送行業(yè)物聯(lián)網(wǎng)與智能化技術(shù)
- 高考英語高頻詞匯匯總
評論
0/150
提交評論