![2023年陜西省延安市成考專升本高等數(shù)學一自考測試卷(含答案)_第1頁](http://file4.renrendoc.com/view/63b41f320e73d5cf52f25a7fa535e8f8/63b41f320e73d5cf52f25a7fa535e8f81.gif)
![2023年陜西省延安市成考專升本高等數(shù)學一自考測試卷(含答案)_第2頁](http://file4.renrendoc.com/view/63b41f320e73d5cf52f25a7fa535e8f8/63b41f320e73d5cf52f25a7fa535e8f82.gif)
![2023年陜西省延安市成考專升本高等數(shù)學一自考測試卷(含答案)_第3頁](http://file4.renrendoc.com/view/63b41f320e73d5cf52f25a7fa535e8f8/63b41f320e73d5cf52f25a7fa535e8f83.gif)
![2023年陜西省延安市成考專升本高等數(shù)學一自考測試卷(含答案)_第4頁](http://file4.renrendoc.com/view/63b41f320e73d5cf52f25a7fa535e8f8/63b41f320e73d5cf52f25a7fa535e8f84.gif)
![2023年陜西省延安市成考專升本高等數(shù)學一自考測試卷(含答案)_第5頁](http://file4.renrendoc.com/view/63b41f320e73d5cf52f25a7fa535e8f8/63b41f320e73d5cf52f25a7fa535e8f85.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年陜西省延安市成考專升本高等數(shù)學一自考測試卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(50題)1.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
2.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.
B.
C.
D.
3.
4.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
5.設(shè)是正項級數(shù),且un<υn(n=1,2,…),則下列命題正確的是()
A.B.C.D.
6.當x→0時,x2是2x的A.A.低階無窮小B.等價無窮小C.同階但不等價無窮小D.高階無窮小
7.
8.已知斜齒輪上A點受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
9.
10.若x0為f(x)的極值點,則().A.A.f(x0)必定存在,且f(x0)=0
B.f(x0)必定存在,但f(x0)不-定等于零
C.f(x0)不存在或f(x0)=0
D.f(x0)必定不存在
11.A.(2+X)^2B.3(2+X)^2C.(2+X)^4D.3(2+X)^4
12.
13.A.1
B.0
C.2
D.
14.
15.A.A.較高階的無窮小量B.等價無窮小量C.同階但不等價無窮小量D.較低階的無窮小量
16.
17.A.A.2B.1C.0D.-1
18.管理幅度是指一個主管能夠直接、有效地指揮下屬成員的數(shù)目,經(jīng)研究發(fā)現(xiàn),高層管理人員的管理幅度通常以()較為合適。
A.4~8人B.10~15人C.15~20人D.10~20人
19.A.-1
B.1
C.
D.2
20.A.0B.1C.∞D(zhuǎn).不存在但不是∞
21.如圖所示,在乎板和受拉螺栓之間墊上一個墊圈,可以提高()。
A.螺栓的拉伸強度B.螺栓的剪切強度C.螺栓的擠壓強度D.平板的擠壓強度
22.A.e-2
B.e-1
C.e
D.e2
23.
()A.x2
B.2x2
C.xD.2x
24.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
25.設(shè)y1、y2是二階常系數(shù)線性齊次方程y"+p1y'+p2y=0的兩個特解,C1、C2為兩個任意常數(shù),則下列命題中正確的是A.A.C1y1+C2y2為該方程的通解
B.C1y1+C2y2不可能是該方程的通解
C.C1y1+C2y2為該方程的解
D.C1y1+C2y2不是該方程的解
26.微分方程y'=x的通解為A.A.2x2+C
B.x2+C
C.(1/2)x2+C
D.2x+C
27.
28.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
29.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx
30.1954年,()提出了一個具有劃時代意義的概念——目標管理。
A.西蒙B.德魯克C.梅奧D.亨利.甘特
31.
32.在穩(wěn)定性計算中,若用歐拉公式算得壓桿的臨界壓力為Fcr,而實際上壓桿屬于中柔度壓桿,則()。
A.并不影響壓桿的臨界壓力值
B.實際的臨界壓力大于Fcr,是偏于安全的
C.實際的臨界壓力小于Fcr,是偏于不安全的
D.實際的臨界壓力大于Fcr,是偏于不安全的
33.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
34.A.
B.
C.-cotx+C
D.cotx+C
35.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
36.
37.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C
38.
39.()。A.
B.
C.
D.
40.方程x2+2y2+3z2=1表示的二次曲面是
A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面41.A.A.0B.1/2C.1D.2
42.
43.某技術(shù)專家,原來從事專業(yè)工作,業(yè)務(wù)精湛,績效顯著,近來被提拔到所在科室負責人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當注意把自己的工作重點調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點仍以技術(shù)工作為主,以自身為榜樣帶動下級
C.以抓管理工作為主,同時參與部分技術(shù)工作,以增強與下級的溝通和了解
D.在抓好技術(shù)工作的同時,做好管理工作
44.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面
45.
46.
47.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強度計算有誤的一項為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
48.
49.
50.
二、填空題(20題)51.
52.
53.
54.y'=x的通解為______.55.
56.
57.過原點且與直線垂直的平面方程為______.
58.
59.
60.
61.
62.已知∫01f(x)dx=π,則∫01dx∫01f(x)f(y)dy=________。
63.
64.
65.
66.67.68.微分方程exy'=1的通解為______.
69.
70.∫x(x2-5)4dx=________。三、計算題(20題)71.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
72.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
73.求微分方程y"-4y'+4y=e-2x的通解.
74.求曲線在點(1,3)處的切線方程.75.
76.
77.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.80.81.
82.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.83.將f(x)=e-2X展開為x的冪級數(shù).84.85.當x一0時f(x)與sin2x是等價無窮小量,則86.
87.
88.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.89.求微分方程的通解.90.證明:四、解答題(10題)91.
92.93.94.計算其中D是由y=x,x=0,y=1圍成的平面區(qū)域.
95.
96.
97.求曲線y=sinx、y=cosx、直線x=0在第一象限所圍圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx。
98.
99.
100.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.五、高等數(shù)學(0題)101.函數(shù)f(x)=xn(a≠0)的彈性函數(shù)為g(x)=_________.
六、解答題(0題)102.
參考答案
1.B
2.C
3.B
4.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知
可知應(yīng)選A。
5.B由正項級數(shù)的比較判別法可以得到,若小的級數(shù)發(fā)散,則大的級數(shù)必發(fā)散,故選B。
6.D
7.C
8.C
9.A
10.C本題考查的知識點為函數(shù)極值點的性質(zhì).
若x0為函數(shù)y=f(x)的極值點,則可能出現(xiàn)兩種情形:
(1)f(x)在點x0處不可導(dǎo),如y=|x|,在點x0=0處f(x)不可導(dǎo),但是點x0=0為f(x)=|x|的極值點.
(2)f(x)在點x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.
從題目的選項可知應(yīng)選C.
本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點x0可導(dǎo),且x0為f(x)的極值點,則必有f(x0)=0”認為是極值的充分必要條件.
11.B
12.D解析:
13.C
14.D
15.C本題考查的知識點為無窮小量階的比較.
16.D解析:
17.C
18.A解析:高層管理人員的管理幅度通常以4~8人較為合適。
19.A
20.D本題考查了函數(shù)的極限的知識點。
21.D
22.D由重要極限公式及極限運算性質(zhì),可知故選D.
23.A
24.D本題考查的知識點為偏導(dǎo)數(shù)的運算.
z=y2x,若求,則需將z認定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
25.C
26.C
27.D
28.B如果y1,y2這兩個特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
29.A
30.B解析:彼得德魯克最早提出了目標管理的思想。
31.B
32.B
33.A
34.C本題考查的知識點為不定積分基本公式.
35.B本題考查的知識點為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
36.C
37.D本題考查的知識點為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
38.B
39.A
40.D本題考查了二次曲面的知識點。
41.C本題考查的知識點為函數(shù)連續(xù)性的概念.
42.A
43.C
44.C方程x=z2中缺少坐標y,是以xOy坐標面上的拋物線x=z2為準線,平行于y軸的直線為母線的拋物柱面。所以選C。
45.A
46.A解析:
47.C
48.A
49.B
50.D解析:
51.
52.
53.
54.本題考查的知識點為:求解可分離變量的微分方程.
由于y'=x,可知
55.本題考查的知識點為函數(shù)商的求導(dǎo)運算.
考生只需熟記導(dǎo)數(shù)運算的法則
56.057.2x+y-3z=0本題考查的知識點為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y-3z=0
58.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:
59.
本題考查的知識點為隱函數(shù)的求導(dǎo).
60.y
61.
62.π2因為∫01f(x)dx=π,所以∫01dx∫01(x)f(y)dy=∫01f(x)dx∫01f(y)dy=(∫01f(x)dx)2=π2。
63.
64.y=-x+1
65.66.
67.68.y=-e-x+C本題考查的知識點為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.
69.
本題考查的知識點為導(dǎo)數(shù)的四則運算.
70.
71.
72.由二重積分物理意義知
73.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
74.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
75.
76.
77.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
78.
列表:
說明
79.函數(shù)的定義域為
注意
80.
81.
則
82.
83.
84.
85.由等價無窮小量的定義可知86.由一階線性微分方程通解公式有
87.
88.
89.
90.
91.92.本題考查的知識點為將初等函數(shù)展開為x的冪級數(shù).
如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾個標準展開式:
93.
94.本題考查的知識點為二重積分運算和選擇二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全新員工入職合同下載
- 2025廣告發(fā)布委托合同書版范本
- 全新房地產(chǎn)買賣合同范文下載
- 公司業(yè)務(wù)擔保合同
- 單位貨物采購合同格式
- 幼兒園股份合伙經(jīng)營合作合同書
- 2024年中考物理(安徽卷)真題詳細解讀及評析
- 地板磚購銷合同模板
- 拓寬知識面的重要性主題班會
- 2025如果合同標的不合格怎么辦反擔保
- 浙教版八年級下冊科學第一章 電和磁整章思維導(dǎo)圖
- (正式版)SH∕T 3541-2024 石油化工泵組施工及驗收規(guī)范
- 動物疫病傳染病防控培訓(xùn)制度
- 美團代運營合同模板
- 初中英語七選五經(jīng)典5篇(附帶答案)
- GB/T 43676-2024水冷預(yù)混低氮燃燒器通用技術(shù)要求
- 特種設(shè)備檢驗現(xiàn)場事故案例分析
- 2023-2024學年西安市高二數(shù)學第一學期期末考試卷附答案解析
- 關(guān)于教師誦讀技能培訓(xùn)課件
- 化學品使用人員培訓(xùn)課程
- 【京東倉庫出庫作業(yè)優(yōu)化設(shè)計13000字(論文)】
評論
0/150
提交評論