2023年安徽省阜陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2023年安徽省阜陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2023年安徽省阜陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2023年安徽省阜陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2023年安徽省阜陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年安徽省阜陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

2.

3.

4.

5.構(gòu)件承載能力不包括()。

A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性

6.

設(shè)f(x)=1+x,則f(x)等于()。A.1

B.

C.

D.

7.下列關(guān)于構(gòu)建的幾何形狀說法不正確的是()。

A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿

8.

9.

10.下列各式中正確的是()。

A.

B.

C.

D.

11.A.A.4/3B.1C.2/3D.1/3

12.

13.A.A.1/2B.1C.2D.e

14.設(shè)f(x)在Xo處不連續(xù),則

A.f(x0)必存在

B.f(x0)必不存在

C.

D.

15.

16.

17.

18.

A.

B.

C.

D.

19.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

20.

21.

22.

23.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

24.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C

25.

26.A.A.

B.B.

C.C.

D.D.

27.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無窮小B.低階無窮小C.同階但不等價(jià)無窮小D.等價(jià)無窮小28.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對(duì)29.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)

30.

31.方程2x2-y2=1表示的二次曲面是()。A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面

32.

33.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

34.

A.2x+1B.2xy+1C.x2+1D.2xy

35.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()

A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值

36.

37.進(jìn)行鋼筋混凝土受彎構(gòu)件斜截面受剪承載力設(shè)計(jì)時(shí),防止發(fā)生斜拉破壞的措施是()。

A.控制箍筋間距和箍筋配筋率B.配置附加箍筋和吊筋C.采取措施加強(qiáng)縱向受拉鋼筋的錨固D.滿足截面限值條件

38.

39.A.A.1

B.

C.m

D.m2

40.

41.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

42.()。A.e-6

B.e-2

C.e3

D.e6

43.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面44.若,則()。A.-1B.0C.1D.不存在

45.

46.

47.

48.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

49.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)

50.

二、填空題(20題)51.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.52.

53.

54.

55.

56.

57.設(shè)y=ex/x,則dy=________。58.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.

59.

60.

61.冪級(jí)數(shù)的收斂半徑為________。62.63.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

64.65.設(shè)Ф(x)=∫0xln(1+t)dt,則Ф"(x)=________。

66.設(shè)f'(1)=2.則

67.

68.69.∫x(x2-5)4dx=________。70.設(shè)z=ln(x2+y),則dz=______.三、計(jì)算題(20題)71.

72.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

73.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).74.將f(x)=e-2X展開為x的冪級(jí)數(shù).75.

76.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.77.

78.

79.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.80.求微分方程的通解.81.82.求曲線在點(diǎn)(1,3)處的切線方程.83.

84.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.85.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

86.證明:87.

88.求微分方程y"-4y'+4y=e-2x的通解.

89.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則90.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)91.

92.將f(x)=e-2x展開為x的冪級(jí)數(shù).

93.展開成x-1的冪級(jí)數(shù),并指明收斂區(qū)間(不考慮端點(diǎn))。

94.

95.設(shè)且f(x)在點(diǎn)x=0處連續(xù)b.

96.

97.

98.

99.求微分方程y"-y'-2y=0的通解。

100.(本題滿分8分)

五、高等數(shù)學(xué)(0題)101.要造一個(gè)容積為4dm2的無蓋長方體箱子,問長、寬、高各多少dm時(shí)用料最省?

六、解答題(0題)102.求曲線y=x2+1在點(diǎn)(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.

參考答案

1.C

2.D

3.B

4.D

5.D

6.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。

7.D

8.A

9.C解析:

10.B

11.C

12.B解析:

13.C

14.B

15.B

16.C解析:

17.B

18.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

19.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.

可知應(yīng)選D.

20.B

21.A

22.C

23.A

24.C

25.B

26.B本題考查了已知積分函數(shù)求原函數(shù)的知識(shí)點(diǎn)

27.B

28.B;又∵分母x→0∴x=0是駐點(diǎn);;即f""(0)=一1<0,∴f(x)在x=0處取極大值

29.A

30.B

31.B

32.D

33.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

34.B

35.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.

36.A解析:

37.A

38.D解析:

39.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無窮小量代換.

解法1

解法2

40.C解析:

41.C

42.A

43.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。

44.D不存在。

45.C解析:

46.C解析:

47.C

48.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

49.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。

50.D51.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.

通常求解的思路為:

先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.

比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).

由y=x3-2x+1,可得

Y'=3x2-2.

令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有

Y'=3x2-2>0.

可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.

注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.

本題中常見的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較

從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.

52.

53.00解析:

54.

55.

56.3x2+4y

57.58.[-1,1

59.

60.22解析:61.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。62.本題考查的知識(shí)點(diǎn)為重要極限公式。63.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。

64.

65.用變上限積分公式(∫0xf(t)dt)"=f(x),則Ф"(x)=ln(1+x),Ф"(x)=。

66.11解析:本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.

由于f'(1)=2,可知

67.(-33)

68.

69.

70.本題考查的知識(shí)點(diǎn)為求二元函數(shù)的全微分.

通常求二元函數(shù)的全微分的思路為:

先求出如果兩個(gè)偏導(dǎo)數(shù)為連續(xù)函數(shù),則可得知

由題設(shè)z=ln(x2+y),令u=x2+y,可得

當(dāng)X2+y≠0時(shí),為連續(xù)函數(shù),因此有

71.

72.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

73.

列表:

說明

74.

75.

76.

77.

78.79.由二重積分物理意義知

80.

81.82.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

83.由一階線性微分方程通解公式有

84.函數(shù)的定義域?yàn)?/p>

注意

85.

86.

87.

88.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

89.由等價(jià)無窮小量的定義可知

90.

91.

92.解

93.

94.

95.

96.97.本題考查的知識(shí)點(diǎn)為求解-階線性微分方程.

將方程化為標(biāo)準(zhǔn)形式

求解一階線性微分方程??梢圆捎脙煞N解法:

解法1利用求解公式,必須先將微分方程化為標(biāo)準(zhǔn)形式y(tǒng)+p(x)y=q(x),則

解法2利用常數(shù)變易法.

原方程相應(yīng)的齊次微分方程為

令C=C(x),則y=C(x)x,代入原方程,可得

可得原方程通解為y=x(x+C).

本題中考生出現(xiàn)的較常見的錯(cuò)誤是:

這是由于沒有將所給方程化為標(biāo)準(zhǔn)方程而導(dǎo)致的錯(cuò)誤.讀者應(yīng)該明確,上述通解公式是標(biāo)準(zhǔn)方程的通解公式.

98.

99.

100.本題考查的知識(shí)點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù).

解法1將所給方程兩端關(guān)于x求偏導(dǎo)數(shù),可得

將所給方程兩端關(guān)于y求偏導(dǎo)數(shù),可得

解法2

【解題指導(dǎo)】

101.設(shè)長、寬、高分別xdmydmzdm;表面積為S=xy+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論