版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.近年來,隨著網(wǎng)絡的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學為了調(diào)查在校大學生使用的主要用途,隨機抽取了名大學生進行調(diào)查,各主要用途與對應人數(shù)的結果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);②可以估計不足的大學生使用主要玩游戲;③可以估計使用主要找人聊天的大學生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.2.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.3.在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?()A. B. C. D.4.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.5.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.6.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.7.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.8.已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知中,,則()A.1 B. C. D.10.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.11.1777年,法國科學家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.12.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標的和為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在各項均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.14.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.15.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.16.已知函數(shù),若函數(shù)有6個零點,則實數(shù)的取值范圍是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,a1=1,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.18.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點,求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.19.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.20.(12分)已知實數(shù)x,y,z滿足,證明:.21.(12分)已知函數(shù)(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.22.(10分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)設點,直線l與曲線C交于不同的兩點A、B,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學生所占的比例,可判斷③的正誤.綜合得出結論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關命題真假的判斷,計算出相應的頻數(shù)與頻率是關鍵,考查數(shù)據(jù)處理能力,屬于基礎題.2.C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.3.D【解析】
設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數(shù)列,,結合等比數(shù)列的性質(zhì)可求出答案.【詳解】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數(shù)列,且公比,則,故,,.故選:D.【點睛】本題考查數(shù)列與數(shù)學文化,考查了等比數(shù)列的性質(zhì),考查了學生的運算求解能力,屬于基礎題.4.B【解析】
設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.5.A【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.6.C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.7.A【解析】
根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉(zhuǎn)化能力.8.D【解析】
設,由,得,利用復數(shù)相等建立方程組即可.【詳解】設,則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.9.C【解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.10.A【解析】
設平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應用,考查計算能力,屬于中等題.11.D【解析】
根據(jù)統(tǒng)計數(shù)據(jù),求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數(shù)學文化為背景,考查利用頻率估計概率,屬于基礎題.12.B【解析】
根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標的和,故選B.【點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學建模和數(shù)學運算的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用等差中項的性質(zhì)和等比數(shù)列通項公式得到關于的方程,解方程求出代入等比數(shù)列通項公式即可.【詳解】因為,成等差數(shù)列,所以,由等比數(shù)列通項公式得,,所以,解得或,因為,所以,所以等比數(shù)列的通項公式為.故答案為:【點睛】本題考查等差中項的性質(zhì)和等比數(shù)列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數(shù)列通項公式是求解本題的關鍵;屬于中檔題.14.【解析】
計算出角的取值范圍,結合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎題.15.【解析】
依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.16.【解析】
由題意首先研究函數(shù)的性質(zhì),然后結合函數(shù)的性質(zhì)數(shù)形結合得到關于a的不等式,求解不等式即可確定實數(shù)a的取值范圍.【詳解】當時,函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實數(shù)滿足,當時,由對勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結合復合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當時,,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個零點,即方程有6個根,也就是有6個根,即與有6個不同交點,注意到函數(shù)關于直線對稱,則函數(shù)關于直線對稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實數(shù)的取值范圍是.故答案為.【點睛】本題主要考查分段函數(shù)的應用,復合函數(shù)的單調(diào)性,數(shù)形結合的數(shù)學思想,等價轉(zhuǎn)化的數(shù)學思想等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)項和轉(zhuǎn)換可得,繼而得到,可得解;(2)代入可得,由數(shù)列為遞增數(shù)列可得,,令,可證明為遞增數(shù)列,即,即得解【詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數(shù)列為遞增數(shù)列,∴,即.令,即.∴為遞增數(shù)列,∴,即的取值范圍為.【點睛】本題考查了數(shù)列綜合問題,考查了項和轉(zhuǎn)換,數(shù)列的單調(diào)性,最值等知識點,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于較難題.18.(1)見解析(2)【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標系,求出二面角的余弦值.試題解析:(1)連接,因為四邊形為菱形,所以.因為平面平面,平面平面,平面,,所以平面.又平面,所以.因為,所以.因為,所以平面.因為分別為,的中點,所以,所以平面(2)設,由(1)得平面.由,,得,.過點作,與的延長線交于點,取的中點,連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因為為平行四邊形,所以,所以平面.又因為,所以平面.因為,所以平面平面.由(1),得平面,所以平面,所以.因為,所以平面,所以是與平面所成角.因為,,所以平面,平面,因為,所以平面平面.所以,,解得.在梯形中,易證,分別以,,的正方向為軸,軸,軸的正方向建立空間直角坐標系.則,,,,,,由,及,得,所以,,.設平面的一個法向量為,由得令,得m=(3,1,2)設平面的一個法向量為,由得令,得.所以又因為二面角是鈍角,所以二面角的余弦值是.19.(1);(2)【解析】
(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導公式,得,結合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設,得,從而,由余弦定理,得,即,又,所以,解得.【點睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎題.20.見解析【解析】
已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現(xiàn),則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點睛】本題考查柯西不等式的應用,屬于基礎題.21.(1)證明見解析(2)【解析】
(1)根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《人力資源使用》課件
- 養(yǎng)老院老人入住確認制度
- 養(yǎng)老院環(huán)境衛(wèi)生與消毒制度
- 《理想的風箏課堂》課件
- 2024年民政部社會福利中心“養(yǎng)老服務人才培訓”擬申報課件信息反饋表
- 2024年新型環(huán)保材料研發(fā)項目投標邀請函模板3篇
- 敬老院老人不愿入住協(xié)議書(2篇)
- 《青蒿素類抗瘧藥》課件
- 《豐子愷白鵝》課件
- 2025年遵義c1貨運上崗證模擬考試
- 足球場天然草坪養(yǎng)護方案
- 六年級上冊心理健康課件6《健康上網(wǎng)快樂多》(27張PPT)
- 船舶管理(航海二三副)理論考試題庫(含答案)
- 吉林省長春市朝陽區(qū)2022-2023學年七年級下學期期末地理試題(含答案)
- 國開電大本科《人文英語4》機考真題(第十六套)
- 2023年云南省昆明滇中新區(qū)公開招聘20人(共500題含答案解析)筆試歷年難、易錯考點試題含答案附詳解
- 皮膚裂傷的護理課件
- 高中生公益活動典型事例十三篇
- 改進維持性血液透析患者貧血狀況PDCA
- 車輛出入庫管理plc設計
- 導地線弧垂測量記錄表
評論
0/150
提交評論