廣東省廣州市越秀區(qū)實(shí)驗(yàn)中學(xué)2022年高三第六次模擬考試數(shù)學(xué)試卷含解析_第1頁
廣東省廣州市越秀區(qū)實(shí)驗(yàn)中學(xué)2022年高三第六次模擬考試數(shù)學(xué)試卷含解析_第2頁
廣東省廣州市越秀區(qū)實(shí)驗(yàn)中學(xué)2022年高三第六次模擬考試數(shù)學(xué)試卷含解析_第3頁
廣東省廣州市越秀區(qū)實(shí)驗(yàn)中學(xué)2022年高三第六次模擬考試數(shù)學(xué)試卷含解析_第4頁
廣東省廣州市越秀區(qū)實(shí)驗(yàn)中學(xué)2022年高三第六次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的展開式中,項(xiàng)的系數(shù)為()A.-23 B.17 C.20 D.632.函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.124.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長(zhǎng)度是()A. B. C. D.5.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn),在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.6.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.7.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.408.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.9.設(shè),命題“存在,使方程有實(shí)根”的否定是()A.任意,使方程無實(shí)根B.任意,使方程有實(shí)根C.存在,使方程無實(shí)根D.存在,使方程有實(shí)根10.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.11.某地區(qū)教育主管部門為了對(duì)該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績(jī),并根據(jù)這2000名學(xué)生的成績(jī)畫出樣本的頻率分布直方圖,如圖所示,則成績(jī)?cè)?,?nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.160012.已知是等差數(shù)列的前項(xiàng)和,若,,則()A.5 B.10 C.15 D.20二、填空題:本題共4小題,每小題5分,共20分。13.已知全集為R,集合,則___________.14.展開式中,含項(xiàng)的系數(shù)為______.15.已知數(shù)列的前項(xiàng)和為,,則滿足的正整數(shù)的值為______.16.函數(shù)的定義域是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,右準(zhǔn)線為,是上的兩個(gè)動(dòng)點(diǎn),.(Ⅰ)若,求的值;(Ⅱ)證明:當(dāng)取最小值時(shí),與共線.18.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)為曲線上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線交曲線分別于,求面積的最小值,并求此時(shí)四邊形的面積.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實(shí)數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點(diǎn),線段的中點(diǎn)為.(1)求線段長(zhǎng)的最小值;(2)求點(diǎn)的軌跡方程.21.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù)(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)二項(xiàng)式展開式的通項(xiàng)公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項(xiàng)公式為.則①出,則出,該項(xiàng)為:;②出,則出,該項(xiàng)為:;③出,則出,該項(xiàng)為:;綜上所述:合并后的項(xiàng)的系數(shù)為17.故選:B【點(diǎn)睛】本小題考查二項(xiàng)式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識(shí),考查理解能力,計(jì)算能力,分類討論和應(yīng)用意識(shí).2.B【解析】

對(duì)分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對(duì)勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點(diǎn)睛】本題考查函數(shù)單調(diào)性,熟練掌握簡(jiǎn)單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.3.B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B4.C【解析】

將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.5.C【解析】

根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進(jìn)而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因?yàn)?在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點(diǎn)睛】本題主要考查了橢圓的定義運(yùn)用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.6.B【解析】

利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).7.C【解析】

設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個(gè)方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.8.C【解析】

依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)椋瞧娣桥己瘮?shù),排除;B.,值域?yàn)?,奇函?shù),排除;C.,值域?yàn)?,奇函?shù),滿足;D.,值域?yàn)?,非奇非偶函?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對(duì)于函數(shù)知識(shí)的綜合應(yīng)用.9.A【解析】

只需將“存在”改成“任意”,有實(shí)根改成無實(shí)根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實(shí)根”的否定是“任意,使方程無實(shí)根”.故選:A【點(diǎn)睛】本題考查含有一個(gè)量詞的命題的否定,此類問題要注意在兩個(gè)方面作出變化:1.量詞,2.結(jié)論,是一道基礎(chǔ)題.10.B【解析】

根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.11.B【解析】

由圖可列方程算得a,然后求出成績(jī)?cè)趦?nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績(jī)?cè)趦?nèi)的頻率,所以成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).故選:B【點(diǎn)睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.12.C【解析】

利用等差通項(xiàng),設(shè)出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點(diǎn)睛】本題考查等差數(shù)列的求和問題,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先化簡(jiǎn)集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點(diǎn)睛】本題主要考查集合的化簡(jiǎn)和并集運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.14.2【解析】

變換得到,展開式的通項(xiàng)為,計(jì)算得到答案.【詳解】,的展開式的通項(xiàng)為:.含項(xiàng)的系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15.6【解析】

已知,利用,求出通項(xiàng),然后即可求解【詳解】∵,∴當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點(diǎn)睛】本題考查通項(xiàng)求解問題,屬于基礎(chǔ)題16.【解析】

由于偶次根式中被開方數(shù)非負(fù),對(duì)數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點(diǎn)睛】此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)證明見解析.【解析】由與,得,,的方程為.設(shè),則,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),當(dāng)且僅當(dāng)或時(shí),取最小值,此時(shí),,故與共線.18.(Ⅰ)證明見解析;(Ⅱ)【解析】

(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.19.(1);(2)面積的最小值為;四邊形的面積為【解析】

(1)將曲線消去參數(shù)即可得到的普通方程,將,代入曲線的極坐標(biāo)方程即可;(2)由(1)得曲線的極坐標(biāo)方程,設(shè),,,利用方程可得,再利用基本不等式得,即可得,根據(jù)題意知,進(jìn)而可得四邊形的面積.【詳解】(1)由曲線的參數(shù)方程為(為參數(shù))消去參數(shù)得曲線的極坐標(biāo)方程為,即,所以,曲線的直角坐標(biāo)方程.(2)依題意得的極坐標(biāo)方程為設(shè),,,則,,故,當(dāng)且僅當(dāng)(即)時(shí)取“=”,故,即面積的最小值為.此時(shí),故所求四邊形的面積為.【點(diǎn)睛】本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點(diǎn)到直線的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.20.(1)(2)【解析】

(1)將曲線的方程化成直角坐標(biāo)方程為,當(dāng)時(shí),線段取得最小值,利用幾何法求弦長(zhǎng)即可.(2)當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),由利用向量的數(shù)量積等于可求解,最后驗(yàn)證當(dāng)點(diǎn)與點(diǎn)重合時(shí)也滿足.【詳解】解曲線的方程化成直角坐標(biāo)方程為即圓心,半徑,曲線為過定點(diǎn)的直線,易知在圓內(nèi),當(dāng)時(shí),線段長(zhǎng)最小為當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),化簡(jiǎn)得當(dāng)點(diǎn)與點(diǎn)重合時(shí),也滿足上式,故點(diǎn)的軌跡方程為【點(diǎn)睛】本題考查了極坐標(biāo)與普通方程的互化、直線與圓的位置關(guān)系、列方程求動(dòng)點(diǎn)的軌跡方程,屬于基礎(chǔ)題.21.(1);(2).【解析】

(1)根據(jù)等比中項(xiàng)性質(zhì)可構(gòu)造方程求得,由等差數(shù)列通項(xiàng)公式可求得結(jié)果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結(jié)合等差和等比數(shù)列求和公式可求得結(jié)果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式的求解、分組求和法求解數(shù)列的前項(xiàng)和的問題;關(guān)鍵是能夠根據(jù)通項(xiàng)公式證得數(shù)列為等比數(shù)列,進(jìn)而采用分組求和法,結(jié)合等差和等比數(shù)列求和公式求得結(jié)果.22.(1);(2)見解析.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論