版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在上的偶函數(shù),對(duì),,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.2.以下四個(gè)命題:①兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個(gè)數(shù)為()A.4 B.3 C.2 D.13.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.4.已知集合,,,則集合()A. B. C. D.5.如果,那么下列不等式成立的是()A. B.C. D.6.已知雙曲線與雙曲線沒有公共點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.7.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.8.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.9.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.10.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.11.設(shè)函數(shù),若函數(shù)有三個(gè)零點(diǎn),則()A.12 B.11 C.6 D.312.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣85二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.14.正四面體的各個(gè)點(diǎn)在平面同側(cè),各點(diǎn)到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.15.如圖,橢圓:的離心率為,F(xiàn)是的右焦點(diǎn),點(diǎn)P是上第一角限內(nèi)任意一點(diǎn),,,若,則的取值范圍是_______.16.某大學(xué)、、、四個(gè)不同的專業(yè)人數(shù)占本???cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個(gè)專業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專業(yè)應(yīng)抽取_________人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:(),點(diǎn)是的左頂點(diǎn),點(diǎn)為上一點(diǎn),離心率.(1)求橢圓的方程;(2)設(shè)過點(diǎn)的直線與的另一個(gè)交點(diǎn)為(異于點(diǎn)),是否存在直線,使得以為直徑的圓經(jīng)過點(diǎn),若存在,求出直線的方程;若不存在,說明理由.18.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點(diǎn),且平面平面ABCD.(1)證明:平面PNB;(2)問棱PA上是否存在一點(diǎn)E,使平面DEM,求的值19.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動(dòng)直線l交拋物線C:于點(diǎn)P,點(diǎn)F為C的焦點(diǎn).圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點(diǎn),過Q且垂直于的直線為,直線,分別與y軸相交于點(diǎn)A,當(dāng)線段AB的長度最小時(shí),求s的值.20.(12分)如圖1,與是處在同-個(gè)平面內(nèi)的兩個(gè)全等的直角三角形,,,連接是邊上一點(diǎn),過作,交于點(diǎn),沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.21.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對(duì),,且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)?,,所以故選:A【點(diǎn)睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.2、C【解析】
①根據(jù)線性相關(guān)性與r的關(guān)系進(jìn)行判斷,
②根據(jù)相關(guān)指數(shù)的值的性質(zhì)進(jìn)行判斷,
③根據(jù)方差關(guān)系進(jìn)行判斷,
④根據(jù)點(diǎn)滿足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),而回歸直線必過樣本中心點(diǎn),可進(jìn)行判斷.【詳解】①若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1,故①正確;
②用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯(cuò)誤;
③若統(tǒng)計(jì)數(shù)據(jù)的方差為1,則的方差為,故③正確;
④因?yàn)辄c(diǎn)滿足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),即,不一定成立,而回歸直線必過樣本中心點(diǎn),所以當(dāng),時(shí),點(diǎn)必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯(cuò)誤;
所以正確的命題有①③.
故選:C.【點(diǎn)睛】本題考查兩個(gè)隨機(jī)變量的相關(guān)性,擬合性檢驗(yàn),兩個(gè)線性相關(guān)的變量間的方差的關(guān)系,以及兩個(gè)變量的線性回歸方程,注意理解每一個(gè)量的定義,屬于基礎(chǔ)題.3、B【解析】
分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點(diǎn)睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等題.4、D【解析】
根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點(diǎn)睛】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.5、D【解析】
利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.6、C【解析】
先求得的漸近線方程,根據(jù)沒有公共點(diǎn),判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點(diǎn),所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.7、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8、D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點(diǎn)代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點(diǎn)睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.9、B【解析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.10、A【解析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.11、B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點(diǎn)個(gè)數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個(gè)或三個(gè)(時(shí)有三個(gè),時(shí)有兩個(gè)),所以關(guān)于的方程只能有一個(gè)根(若有兩個(gè)根,則關(guān)于的方程有四個(gè)或五個(gè)根),由,可得的值分別為,則故選B.【點(diǎn)睛】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于??碱}型.12、D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項(xiàng)和公比,根據(jù)等比數(shù)列的前n項(xiàng)和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的前n項(xiàng)和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點(diǎn)O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設(shè),由題,得,又,所以,則點(diǎn)C在以AB為直徑的圓上,取AB的中點(diǎn)為M,則,設(shè)以AB為直徑的圓與線段OM的交點(diǎn)為E,則的最小值是,因?yàn)椋?,所以的最小值?故答案為:【點(diǎn)睛】本題主要考查向量的綜合應(yīng)用問題,涉及到圓的相關(guān)知識(shí)與余弦定理,考查學(xué)生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.14、【解析】
不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),根據(jù)題意F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點(diǎn)A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),如圖所示:由題意得:F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長為a,,頂點(diǎn)D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點(diǎn)A到面EDF的距離為,所以,因?yàn)?,所以,解得,故答案為:【點(diǎn)睛】本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,15、【解析】
由于點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點(diǎn)在橢圓上,所以將點(diǎn)的坐標(biāo)代入橢圓方程中化簡可得結(jié)果.【詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點(diǎn)睛】此題考查的是利用橢圓中相關(guān)兩個(gè)點(diǎn)的關(guān)系求離心率,綜合性強(qiáng),屬于難題.16、【解析】
求出專業(yè)人數(shù)在、、、四個(gè)專業(yè)總?cè)藬?shù)的比例后可得.【詳解】由題意、、、四個(gè)不同的專業(yè)人數(shù)的比例為,故專業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【點(diǎn)睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,【解析】
(1)把點(diǎn)代入橢圓C的方程,再結(jié)合離心率,可得a,b,c的關(guān)系,可得橢圓的方程;(2)設(shè)出直線的方程,代入橢圓,運(yùn)用韋達(dá)定理可求得點(diǎn)的坐標(biāo),再由,可求得直線的方程,要注意檢驗(yàn)直線是否和橢圓有兩個(gè)交點(diǎn).【詳解】(1)由題可得∴,所以橢圓的方程(2)由題知,設(shè),直線的斜率存在設(shè)為,則與橢圓聯(lián)立得,,∴,,∴若以為直徑的圓經(jīng)過點(diǎn),則,∴,化簡得,∴,解得或因?yàn)榕c不重合,所以舍.所以直線的方程為.【點(diǎn)睛】本題考查橢圓的簡單性質(zhì),考查直線與橢圓位置關(guān)系的應(yīng)用,考查了向量的數(shù)量積的運(yùn)用,屬于中檔題.18、(1)證明見解析;(2)存在,.【解析】
(1)根據(jù)題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點(diǎn)Q,連接EQ,利用線面平行的性質(zhì)定理可得,從而可得,在正方形ABCD中,由即可求解.【詳解】(1)證明:在正方形ABCD中,M,N分別是AB,AD的中點(diǎn),∴,,.∴.∴.又,∴,∴.∵為等邊三角形,N是AD的中點(diǎn),∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如圖,連接AC交DM于點(diǎn)Q,連接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在點(diǎn)E,使平面DEM,此時(shí),E是棱A的靠近點(diǎn)A的三等分點(diǎn).【點(diǎn)睛】本題考查了線面垂直的判定定理、線面平行的性質(zhì)定理,考查了學(xué)生的推理能力以及空間想象能力,屬于空間幾何中的基礎(chǔ)題.19、(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因?yàn)閽佄锞€C的方程為,所以F的坐標(biāo)為,設(shè),因?yàn)閳AM與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點(diǎn),則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時(shí),取得極小值也是最小值,即AB取得最小值此時(shí).【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于難題.20、(1)證明見解析(2)(3)【解析】
根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標(biāo)原點(diǎn),為軸建立空間直角坐標(biāo)系,根據(jù),可知,,表示相應(yīng)點(diǎn)的坐標(biāo),分別求得平面與平面的法向量,代入求解.設(shè)所求幾何體的體積為,設(shè)為高,則,表示梯形BEFD和ABD的面積由,再利用導(dǎo)數(shù)求最值.【詳解】(1)證明:不妨設(shè)與的交點(diǎn)為與的交點(diǎn)為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因?yàn)槠矫?,所?...(2)解:依題意,有平面平面,又平面,則有平面,,又由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國冰箱行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國美容培訓(xùn)行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 建設(shè)施工過程職業(yè)病危害防治總結(jié)報(bào)告
- 肇慶市中小學(xué)教學(xué)質(zhì)量評(píng)估2012屆高中畢業(yè)班第二次模擬試題數(shù)學(xué)(理)
- 浙江中乾計(jì)量校準(zhǔn)有限公司介紹企業(yè)發(fā)展分析報(bào)告
- 軟件評(píng)估報(bào)告范例怎么寫
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)集錦
- 年產(chǎn)毛竹纖維粉生物基可降解材料項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 年產(chǎn)15萬噸(折百)稀硝酸及10萬噸濃硝酸項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 二零二五年度技術(shù)服務(wù)合同標(biāo)的和技術(shù)要求
- 急性早幼粒細(xì)胞白血病教學(xué)演示課件
- 《望人中診病講義》課件
- 公務(wù)員考試申論電子教材及國家公務(wù)員考試申論電子教材
- 度假村開發(fā)方案
- 田園水景打造方案
- 廣東省惠州市2022-2023學(xué)年高一上學(xué)期期末考試物理試題(含答案)
- 2023年租賃風(fēng)控主管年度總結(jié)及下一年展望
- 開關(guān)插座必看的七個(gè)安全隱患范文
- 消防救援-低溫雨雪冰凍惡劣天氣條件下災(zāi)害防范及救援行動(dòng)與安全
- 公租房續(xù)租申請書范文示例
- 事故處理程序全套
評(píng)論
0/150
提交評(píng)論