




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年內(nèi)蒙古自治區(qū)包頭市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
2.A.A.0B.1C.2D.3
3.A.3B.2C.1D.0
4.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合
5.
6.
7.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
8.
9.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().
A.1B.0C.-1/2D.-1
10.
11.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
12.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
13.
14.在空間直角坐標(biāo)系中方程y2=x表示的是
A.拋物線B.柱面C.橢球面D.平面
15.
16.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值17.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2
B.eC.1D.1/e18.設(shè)y=e-2x,則y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x
19.
20.方程x2+2y2-z2=0表示的二次曲面是()
A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面二、填空題(20題)21.
22.23.設(shè),且k為常數(shù),則k=______.24.
25.
26.過(guò)點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_(kāi)______.27.28.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則29.30.設(shè)y=ln(x+2),貝y"=________。
31.
32.若f'(x0)=1,f(x0)=0,則33.過(guò)M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.
34.
35.y=lnx,則dy=__________。
36.
37.
20.
38.39.40.三、計(jì)算題(20題)41.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).42.
43.求微分方程y"-4y'+4y=e-2x的通解.
44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.
46.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
47.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.48.
49.證明:
50.
51.求曲線在點(diǎn)(1,3)處的切線方程.
52.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.54.55.求微分方程的通解.56.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
58.
59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.60.四、解答題(10題)61.
62.將展開(kāi)為x的冪級(jí)數(shù).63.
64.
65.一象限的封閉圖形.
66.
67.展開(kāi)成x-1的冪級(jí)數(shù),并指明收斂區(qū)間(不考慮端點(diǎn))。
68.若y=y(x)由方程y=x2+y2,求dy。
69.
70.
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.B
2.B
3.A
4.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;
當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
5.A
6.D
7.C
8.A
9.C解析:
10.D解析:
11.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
12.B
13.D
14.B解析:空間中曲線方程應(yīng)為方程組,故A不正確;三元一次方程表示空間平面,故D不正確;空間中,缺少一維坐標(biāo)的方程均表示柱面,可知應(yīng)選B。
15.A
16.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
17.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).
由于y=lnx,可知可知應(yīng)選D.
18.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).
可知應(yīng)選C.
19.A
20.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。
21.y=lnx+Cy=lnx+C解析:22.2.
本題考查的知識(shí)點(diǎn)為二次積分的計(jì)算.
由相應(yīng)的二重積分的幾何意義可知,所給二次積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二次積分計(jì)算可知
23.本題考查的知識(shí)點(diǎn)為廣義積分的計(jì)算.
24.本題考查的知識(shí)點(diǎn)為重要極限公式。
25.26.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過(guò)點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為27.0.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.
通常求解的思路為:
28.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此
29.
本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
30.
31.32.-133.
本題考查的知識(shí)點(diǎn)為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).
由直線的點(diǎn)向式方程可知所求直線方程為
34.x2+y2=Cx2+y2=C解析:
35.(1/x)dx
36.ln2
37.
38.39.0.
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此
40.0
41.
42.
43.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
44.
列表:
說(shuō)明
45.由一階線性微分方程通解公式有
46.
47.函數(shù)的定義域?yàn)?/p>
注意
48.
則
49.
50.
51.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
53.
54.
55.
56.
57.由等價(jià)無(wú)窮小量的定義可知
58
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 木工班班組勞務(wù)分包合同
- 仔豬購(gòu)銷合同協(xié)議書(shū)
- 深圳住房租賃合同書(shū)
- 辦公用品采購(gòu)買賣合同
- 衢州職業(yè)技術(shù)學(xué)院《搜索引擎營(yíng)銷》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東化工職業(yè)學(xué)院《英語(yǔ)學(xué)科教學(xué)設(shè)計(jì)與技能訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 三江學(xué)院《世界古代史(下)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東食品藥品職業(yè)學(xué)院《醫(yī)務(wù)社會(huì)工作》2023-2024學(xué)年第二學(xué)期期末試卷
- 西安交通大學(xué)城市學(xué)院《環(huán)境化學(xué)Ⅱ》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州財(cái)經(jīng)大學(xué)《中學(xué)政治課教師技能訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 銷售沙盤演練培訓(xùn)
- 2025年中國(guó)工程建設(shè)行業(yè)現(xiàn)狀、發(fā)展環(huán)境及投資前景分析報(bào)告
- 《海瀾之家公司績(jī)效管理現(xiàn)狀、問(wèn)題及優(yōu)化對(duì)策(7600字論文)》
- 小學(xué)四年級(jí)英語(yǔ)教學(xué)反思3篇
- DB1509T 0025-2024 肉牛舍設(shè)計(jì)與建筑技術(shù)規(guī)范
- 上海室內(nèi)裝飾施工合同示范文本2024年
- 2024版2024年《汽車文化》全套教案
- 房地產(chǎn) -中建科工五大類型項(xiàng)目成本指標(biāo)庫(kù)
- 2024小紅書(shū)保健品行業(yè)營(yíng)銷通案
- 未來(lái)網(wǎng)絡(luò)支撐下的數(shù)字身份體系:產(chǎn)業(yè)和技術(shù)發(fā)展趨勢(shì)(2024年)定稿版本
- 新《卷煙營(yíng)銷》理論知識(shí)考試題庫(kù)(附答案)
評(píng)論
0/150
提交評(píng)論