2022-2023學(xué)年吉林省松原市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年吉林省松原市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年吉林省松原市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年吉林省松原市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年吉林省松原市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年吉林省松原市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(40題)1.

2.

3.

等于()A.A.

B.

C.

D.0

4.

5.方程x2+y2-2z=0表示的二次曲面是.

A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面

6.

A.絕對(duì)收斂

B.條件收斂

C.發(fā)散

D.收斂性不能判定

7.

8.設(shè)f'(x)=1+x,則f(x)等于().A.A.1

B.X+X2+C

C.x++C

D.2x+x2+C

9.

10.設(shè)y=5x,則y'等于().

A.A.

B.

C.

D.

11.下列命題不正確的是()。

A.兩個(gè)無窮大量之和仍為無窮大量

B.上萬個(gè)無窮小量之和仍為無窮小量

C.兩個(gè)無窮大量之積仍為無窮大量

D.兩個(gè)有界變量之和仍為有界變量

12.A.

B.

C.

D.

13.A.A.>0B.<0C.=0D.不存在

14.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)

15.

16.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

17.

18.

19.

20.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

21.

22.()A.A.sinx+C

B.cosx+C

C.-sinx+C

D.-cosx+C

23.

24.()。A.

B.

C.

D.

25.A.0B.1C.2D.-1

26.下面哪個(gè)理論關(guān)注下屬的成熟度()

A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論27.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

28.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

29.A.A.2

B.1

C.1/2e

D.

30.

A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)

31.

32.A.-e2x-y

B.e2x-y

C.-2e2x-y

D.2e2x-y

33.下列命題正確的是()A.A.

B.

C.

D.

34.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

35.方程y+2y+y=0的通解為

A.c1+c2e-x

B.e-x(c1+C2x)

C.c1e-x

D.c1e-x+c2ex

36.A.I1=I2

B.I1>I2

C.I1<I2

D.無法比較

37.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同38.()。A.過原點(diǎn)且平行于X軸B.不過原點(diǎn)但平行于X軸C.過原點(diǎn)且垂直于X軸D.不過原點(diǎn)但垂直于X軸

39.

40.下列關(guān)系正確的是()。A.

B.

C.

D.

二、填空題(50題)41.

42.級(jí)數(shù)的收斂半徑為______.43.44.設(shè)y=sinx2,則dy=______.45.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.函數(shù)的間斷點(diǎn)為______.

60.

61.

62.

63.

64.

65.

66.

67.

68.69.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為______.

70.函數(shù)f(x)=xe-x的極大值點(diǎn)x=__________。

71.設(shè)y=f(x)在點(diǎn)x0處可導(dǎo),且在點(diǎn)x0處取得極小值,則曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為________。

72.73.

74.

75.

76.

77.78.f(x)=lnx,則f[f(x)]=__________。79.y″+5y′=0的特征方程為——.

80.

81.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

82.

83.設(shè)f(x)=esinx,則=________。

84.

85.設(shè),則f'(x)=______.

86.

87.

則b__________.

88.

89.函數(shù)f(x)=x2在[-1,1]上滿足羅爾定理的ξ=_________。

90.

三、計(jì)算題(20題)91.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

92.

93.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.94.將f(x)=e-2X展開為x的冪級(jí)數(shù).95.求曲線在點(diǎn)(1,3)處的切線方程.96.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.97.98.求微分方程的通解.99.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.100.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.101.102.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).103.證明:

104.

105.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

106.

107.108.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

109.求微分方程y"-4y'+4y=e-2x的通解.

110.

四、解答題(10題)111.

112.

113.

114.

115.116.

117.

118.

119.設(shè)x2為f(x)的原函數(shù).求.120.五、高等數(shù)學(xué)(0題)121.求六、解答題(0題)122.(本題滿分8分)設(shè)y=x+arctanx,求y.

參考答案

1.D

2.B

3.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有

故應(yīng)選D.

4.D

5.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。

6.A

7.B

8.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).

可知應(yīng)選C.

9.A解析:

10.C本題考查的知識(shí)點(diǎn)為基本初等函數(shù)的求導(dǎo).

y=5x,y'=5xln5,因此應(yīng)選C.

11.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。

12.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

13.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。

14.A

15.D解析:

16.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

17.C

18.D

19.A

20.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

21.A

22.A

23.A

24.A

25.C

26.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。

27.A

28.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知

可知應(yīng)選A。

29.B

30.A

本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.

31.B

32.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

33.D

34.B

35.B

36.C因積分區(qū)域D是以點(diǎn)(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.

37.D

38.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過原點(diǎn)(或由

39.D

40.B由不定積分的性質(zhì)可知,故選B.

41.

42.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給級(jí)數(shù)為缺項(xiàng)情形,由于

43.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。44.2xcosx2dx本題考查的知識(shí)點(diǎn)為一元函數(shù)的微分.

由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.45.[-1,1

46.

解析:

47.3x2siny

48.

49.

50.

51.63/1252.1;本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.

53.x+2y-z-2=0

54.4x3y

55.本題考查的知識(shí)點(diǎn)為定積分計(jì)算.

可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時(shí),a=0;當(dāng)x=1時(shí),u=2.因此

或利用湊微分法

本題中考生常在最后由于粗心而出現(xiàn)錯(cuò)誤.如

這里中丟掉第二項(xiàng).

56.33解析:

57.

58.359.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

僅當(dāng),即x=±1時(shí),函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點(diǎn)。

60.1/21/2解析:

61.

62.

63.

64.

65.

66.

67.-4cos2x68.

本題考查的知識(shí)點(diǎn)為不定積分計(jì)算.

69.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為

y-f(x0)=f'(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為

y=f(1)=0.

本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為

y-f(x0)=f'(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為

y-f(1)=f'(x)(x-1).

本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為

y-1=0.

70.1

71.y=f(x0)y=f(x)在點(diǎn)x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點(diǎn)。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。

72.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).73.3x2

74.

75.

解析:

76.ln|x-1|+c77.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂區(qū)間。由于所給級(jí)數(shù)為不缺項(xiàng)情形,

78.則79.由特征方程的定義可知,所給方程的特征方程為

80.

81.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。

82.00解析:83.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

84.

85.本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.

86.y=f(0)

87.所以b=2。所以b=2。

88.

本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.

89.0

90.

91.

92.

93.由二重積分物理意義知

94.95.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

96.

97.

98.99.函數(shù)的定義域?yàn)?/p>

注意

100.

101.

102.

列表:

說明

103.

104.

105.需求規(guī)律為Q=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論