版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年廣東省惠州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)
3.當(dāng)α<x<b時(shí),f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸
4.
5.A.f(2x)
B.2f(x)
C.f(-2x)
D.-2f(x)
6.
設(shè)f(x)=1+x,則f(x)等于()。A.1
B.
C.
D.
7.
8.
9.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
10.
11.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
12.下列()不是組織文化的特征。
A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性
13.
14.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定
15.
16.方程x2+2y2-z2=0表示的二次曲面是()
A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面
17.下列函數(shù)在指定區(qū)間上滿(mǎn)足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
18.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
19.
20.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿(mǎn)足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)二、填空題(20題)21.
20.
22.
23.
24.過(guò)點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_(kāi)________.
25.
26.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為_(kāi)___。
27.
28.
29.
30.
31.設(shè)z=xy,則dz=______.
32.
33.
34.
35.設(shè)f(x)=sinx/2,則f'(0)=_________。
36.微分方程y'+4y=0的通解為_(kāi)________。
37.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為_(kāi)_____.38.過(guò)M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.
39.函數(shù)在x=0連續(xù),此時(shí)a=______.
40.
三、計(jì)算題(20題)41.
42.43.
44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.46.證明:
47.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
48.求微分方程的通解.49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.51.52.
53.求曲線在點(diǎn)(1,3)處的切線方程.54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
56.
57.求微分方程y"-4y'+4y=e-2x的通解.
58.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).59.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)61.62.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.
63.求∫sin(x+2)dx。
64.
65.
66.給定曲線y=x3與直線y=px-q(其中p>0),求p與q為何關(guān)系時(shí),直線y=px-q是y=x3的切線.
67.68.69.
70.
五、高等數(shù)學(xué)(0題)71.要造一個(gè)容積為4dm2的無(wú)蓋長(zhǎng)方體箱子,問(wèn)長(zhǎng)、寬、高各多少dm時(shí)用料最省?
六、解答題(0題)72.
參考答案
1.C
2.A
3.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,
可知曲線y=f'(x)在(α,b)內(nèi)為凹,因此選A。
4.D
5.A由可變上限積分求導(dǎo)公式可知因此選A.
6.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。
7.C
8.D
9.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
10.D解析:
11.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
12.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。
13.D
14.C
15.C
16.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。
17.C
18.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
19.B
20.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
21.
22.
23.
24.
25.y=f(0)26.(1,-1)
27.
28.2
29.
30.
31.yxy-1dx+xylnxdy
32.
33.0
34.-ln|x-1|+C
35.1/2
36.y=Ce-4x
37.
;本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題.
由于x2+y2≤a2,y>0可以表示為
0≤θ≤π,0≤r≤a,
因此
38.
本題考查的知識(shí)點(diǎn)為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).
由直線的點(diǎn)向式方程可知所求直線方程為
39.0
40.
41.
42.
43.
則
44.
45.
46.
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
48.
49.
50.由二重積分物理意義知
51.52.由一階線性微分方程通解公式有
53.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.函數(shù)的定義域?yàn)?/p>
注意
55.
列表:
說(shuō)明
56.
57.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
58.59.由等價(jià)無(wú)窮小量的定義可知
60.
61.62.由于直線2x-6y+1=0的斜率k=1/3,與其垂直的直線的斜率k1=-1/k=-3.對(duì)于y=x3+3x25,y'=3x2+6x.由題意應(yīng)有3x2+6x=-3,因此x2+2x+1=0,x=-1,此時(shí)y=(-1)3+3(-1)2-5=-3.即切點(diǎn)為(-1,-3).切線方程為y+3=-3(x+1),或?qū)憺?x+y+6=0.本題考查的知識(shí)點(diǎn)為求曲線的切線方程.
求曲線y=f(x,y)的切線方程,通常要找出切點(diǎn)及函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值.所給問(wèn)題沒(méi)有給出切點(diǎn),因此依已給條件找出切點(diǎn)是首要問(wèn)題.得出切點(diǎn)、切線的斜率后,可依直線的點(diǎn)斜式方程求出切線方程.
63.∫sin(x+2)dx=∫sin(x+2)d(x+2)=-cos(x+2)+C。
64.
65.
66.
67.68.本題考查的知識(shí)點(diǎn)為求解-階線性微分方程.
將方程化為標(biāo)準(zhǔn)形式
求解一階線性微分方程常可以采用兩種解法:
解法1利用求解公式,必須先將微分方程化為標(biāo)準(zhǔn)形式y(tǒng)+p(x)y=q(x),則
解法2利用常數(shù)變易法.
原方程相應(yīng)的齊次微分方程為
令C=C(x),則y=C(x)x,代入原方程,可得
可得原方程通解為y=x(x+C).
本題中考生出現(xiàn)的較常見(jiàn)的錯(cuò)誤是:
這是由于沒(méi)有將所給方程化為標(biāo)準(zhǔn)方程而導(dǎo)致的錯(cuò)誤.讀者應(yīng)該明確,上述通解公式是標(biāo)準(zhǔn)方程的通解公式.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024常年物資采購(gòu)協(xié)議范本
- 2024年舞臺(tái)搭建項(xiàng)目專(zhuān)用協(xié)議協(xié)議
- 2024家庭水電安裝項(xiàng)目協(xié)議范本
- 2024年化建筑砂漿采購(gòu)協(xié)議范本
- 2024年活雞買(mǎi)賣(mài)雙方權(quán)益保障協(xié)議
- 2024建設(shè)項(xiàng)目用電合作協(xié)議
- 2024年學(xué)生違紀(jì)行為處理協(xié)議
- 2024水電項(xiàng)目專(zhuān)用材料采購(gòu)協(xié)議范本
- 2024年設(shè)備采購(gòu)協(xié)議模板2
- 2024年度視頻制作項(xiàng)目協(xié)議格式
- 小學(xué)科學(xué)教科版六年級(jí)上冊(cè)全冊(cè)課課練(含答案)(2023秋)
- 護(hù)理實(shí)訓(xùn)室文化墻建設(shè)方案
- 小飾品店計(jì)劃書(shū)
- 康復(fù)治療行業(yè)發(fā)展趨勢(shì)
- 鐵路行車(chē)安全管理-行車(chē)安全系統(tǒng)管理
- 27.1.1 圓的基本元素 華師版九年級(jí)數(shù)學(xué)下冊(cè)學(xué)案
- 辛亥革命之意義
- 實(shí)驗(yàn)1-接觸角探測(cè)液法測(cè)定聚合物表面張力
- 婦科人工流產(chǎn)女性落實(shí)高效避孕措施依從性低原因分析魚(yú)骨圖柏拉圖對(duì)策擬定
- 小學(xué)冬至主題班會(huì)-弘揚(yáng)傳統(tǒng)情暖童心 課件
- 客服的職業(yè)規(guī)劃書(shū)
評(píng)論
0/150
提交評(píng)論