2022-2023學(xué)年安徽省蚌埠市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年安徽省蚌埠市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年安徽省蚌埠市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年安徽省蚌埠市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年安徽省蚌埠市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年安徽省蚌埠市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.曲線Y=x-3在點(diǎn)(1,1)處的切線的斜率為().

A.-1

B.-2

C.-3

D.-4

2.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶

3.

4.

5.A.有一個(gè)拐點(diǎn)B.有兩個(gè)拐點(diǎn)C.有三個(gè)拐點(diǎn)D.無(wú)拐點(diǎn)

6.設(shè)x是f(x)的一個(gè)原函數(shù),則f(x)=A.A.x2/2B.2x2

C.1D.C(任意常數(shù))

7.

8.

9.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同

10.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4

11.設(shè)f(x)在點(diǎn)x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

12.

13.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小

14.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無(wú)關(guān)條件

15.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

16.1954年,()提出了一個(gè)具有劃時(shí)代意義的概念——目標(biāo)管理。

A.西蒙B.德魯克C.梅奧D.亨利.甘特

17.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

18.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2

19.

20.A.1/3B.1C.2D.321.()。A.-2B.-1C.0D.2

22.

23.交換二次積分次序等于().A.A.

B.

C.

D.

24.

25.設(shè)球面方程為(x-1)2+(y+2)2+(z-3)2=4,則該球的球心坐標(biāo)與半徑分別為()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);426.A.A.連續(xù)點(diǎn)

B.

C.

D.

27.

28.

29.下列等式成立的是()。

A.

B.

C.

D.

30.

31.下列命題正確的是()A.A.

B.

C.

D.

32.()。A.

B.

C.

D.

33.

34.

35.A.A.-(1/2)B.1/2C.-1D.236.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

37.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()

A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較

38.

39.

40.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面

41.

42.

A.必定收斂B.必定發(fā)散C.收斂性與α有關(guān)D.上述三個(gè)結(jié)論都不正確43.44.A.0B.1C.2D.4

45.設(shè)x=1為y=x3-ax的極小值點(diǎn),則a等于().

A.3

B.

C.1

D.1/3

46.

47.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.

B.5f(x)

C.f(5x)

D.5f(5x)

48.

49.

50.平衡積分卡控制是()首創(chuàng)的。

A.戴明B.施樂(lè)公司C.卡普蘭和諾頓D.國(guó)際標(biāo)準(zhǔn)化組織二、填空題(20題)51.52.極限=________。53.54.

55.

56.

57.

58.59.60.

61.

62.直線的方向向量為_(kāi)_______。

63.

64.

65.66.

67.

68.69.微分方程y"=y的通解為_(kāi)_____.

70.

三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.72.73.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.74.求微分方程的通解.75.

76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.

78.79.求曲線在點(diǎn)(1,3)處的切線方程.80.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).81.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則82.證明:83.

84.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

85.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

86.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

87.

88.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

89.求微分方程y"-4y'+4y=e-2x的通解.

90.

四、解答題(10題)91.求微分方程y"-4y'+4y=e-2x的通解。

92.

93.

94.

95.求曲線y=在點(diǎn)(1,1)處的切線方程.

96.

97.

98.

99.設(shè)且f(x)在點(diǎn)x=0處連續(xù)b.

100.五、高等數(shù)學(xué)(0題)101.

,則

=__________。

六、解答題(0題)102.

參考答案

1.C點(diǎn)(1,1)在曲線.由導(dǎo)數(shù)的幾何意義可知,所求切線的斜率為-3,因此選C.

2.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

3.C解析:

4.D解析:

5.D

6.Cx為f(x)的一個(gè)原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。

7.B解析:

8.A

9.D

10.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.

11.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。

12.D解析:

13.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。

14.D

15.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知

可知應(yīng)選A。

16.B解析:彼得德魯克最早提出了目標(biāo)管理的思想。

17.B

18.A由于

可知應(yīng)選A.

19.C

20.D解法1由于當(dāng)x一0時(shí),sinax~ax,可知故選D.

解法2故選D.

21.A

22.B

23.B本題考查的知識(shí)點(diǎn)為交換二次積分次序.

由所給二次積分可知積分區(qū)域D可以表示為

1≤y≤2,y≤x≤2,

交換積分次序后,D可以表示為

1≤x≤2,1≤y≤x,

故應(yīng)選B.

24.A解析:

25.C

26.C解析:

27.D

28.D

29.C

30.A解析:

31.D

32.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。

33.B

34.B

35.A

36.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

37.A由f"(x)>0說(shuō)明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。

38.C

39.C

40.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

41.A

42.D本題考查的知識(shí)點(diǎn)為正項(xiàng)級(jí)數(shù)的比較判別法.

43.C

44.A本題考查了二重積分的知識(shí)點(diǎn)。

45.A解析:本題考查的知識(shí)點(diǎn)為判定極值的必要條件.

由于y=x3-ax,y'=3x2-a,令y'=0,可得

由于x=1為y的極小值點(diǎn),因此y'|x=1=0,從而知

故應(yīng)選A.

46.A

47.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).

(∫f5x)dx)'為將f(5x)先對(duì)x積分,后對(duì)x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對(duì)x積分,后對(duì)x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).

可知應(yīng)選C.

48.D

49.A解析:

50.C

51.52.因?yàn)樗髽O限中的x的變化趨勢(shì)是趨近于無(wú)窮,因此它不是重要極限的形式,由于=0,即當(dāng)x→∞時(shí),為無(wú)窮小量,而cosx-1為有界函數(shù),利用無(wú)窮小量性質(zhì)知53.

本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫(xiě)出特征方程,求出特征根,再寫(xiě)出方程的通解.

54.

55.[-11]

56.R

57.00解析:

58.

59.

60.

61.(03)(0,3)解析:62.直線l的方向向量為

63.4π

64.65.ln(1+x)本題考查的知識(shí)點(diǎn)為可變上限積分求導(dǎo).

66.0.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.

通常求解的思路為:

67.y=x3+1

68.69.y'=C1e-x+C2ex

;本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

將方程變形,化為y"-y=0,

特征方程為r2-1=0;

特征根為r1=-1,r2=1.

因此方程的通解為y=C1e-x+C2ex.

70.1/e1/e解析:

71.

72.

73.由二重積分物理意義知

74.

75.

76.函數(shù)的定義域?yàn)?/p>

注意

77.由一階線性微分方程通解公式有

78.79.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

80.

列表:

說(shuō)明

81.由等價(jià)無(wú)窮小量的定義可知

82.

83.

84.需求規(guī)律

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論