江蘇省鎮(zhèn)江市潤州區(qū)金山實驗學校2022年九年級數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
江蘇省鎮(zhèn)江市潤州區(qū)金山實驗學校2022年九年級數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
江蘇省鎮(zhèn)江市潤州區(qū)金山實驗學校2022年九年級數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
江蘇省鎮(zhèn)江市潤州區(qū)金山實驗學校2022年九年級數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
江蘇省鎮(zhèn)江市潤州區(qū)金山實驗學校2022年九年級數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.給出下列一組數(shù):,,,,,其中無理數(shù)的個數(shù)為()A.0 B.1 C.2 D.32.若拋物線y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三點,則y1,y2,y3的大小關系為()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y13.下列汽車標志圖片中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.如圖,已知AD∥BE∥CF,那么下列結論不成立的是()A. B. C. D.5.如圖,在平面直角坐標系中,點A,C在x軸上,點C的坐標為(﹣1,0),AC=1.將Rt△ABC先繞點C順時針旋轉90°,再向右平移3個單位長度,則變換后點A的對應點坐標是()A.(1,1) B.(1,1) C.(﹣1,1) D.(1,﹣1)6.某籃球隊14名隊員的年齡如表:年齡(歲)18192021人數(shù)5432則這14名隊員年齡的眾數(shù)和中位數(shù)分別是()A.18,19 B.19,19 C.18,4 D.5,47.如圖,點C在弧ACB上,若∠OAB=20°,則∠ACB的度數(shù)為()A. B. C. D.8.如圖,在中,,則AC的長為()A.5 B.8 C.12 D.139.如果,那么下列比例式中正確的是()A. B. C. D.10.在Rt△ABC中,∠C=90°,tanA=,則sinA的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在中,交于點,交于點.若、、,則的長為_________.12.已知A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函數(shù)y=﹣圖象上的三個點,把y1與、的的值用小于號連接表示為________.13.已知x=2是關于x的方程x2-3x+k=0的一個根,則常數(shù)k的值是___________.14.已知關于的方程的一個根為-2,則方程另一個根為__________.15.已知四條線段a、2、6、a+1成比例,則a的值為_____.16.如上圖,四邊形中,,點在軸上,雙曲線過點,交于點,連接.若,,則的值為______.17.小明身高是1.6m,影長為2m,同時刻教學樓的影長為24m,則樓的高是_____.18.如圖,折疊長方形的一邊AD,使點D落在BC邊的點F處,已知AB=8cm,BC=10cm,則EF=________.三、解答題(共66分)19.(10分)已知在平面直角坐標系中位置如圖所示.(1)畫出繞點按順時針方向旋轉后的;(2)求點旋轉到點所經(jīng)過的路線長(結果保留).20.(6分)非洲豬瘟疫情發(fā)生以來,豬肉市場供應階段性偏緊和豬價大幅波動時有發(fā)生,為穩(wěn)定生豬生產(chǎn),促進轉型升級,增強豬肉供應保障能力,國務院辦公廳于2019年9月印發(fā)了《關于穩(wěn)定生豬生產(chǎn)促進轉型升級的意見》,某生豬飼養(yǎng)場積極響應國家號召,努力提高生產(chǎn)經(jīng)營管理水平,穩(wěn)步擴大養(yǎng)殖規(guī)模,增加豬肉供應量。該飼養(yǎng)場2019年每月生豬產(chǎn)量y(噸)與月份x(,且x為整數(shù))之間的函數(shù)關系如圖所示.(1)請直接寫出當(x為整數(shù))和(x為整數(shù))時,y與x的函數(shù)關系式;(2)若該飼養(yǎng)場生豬利潤P(萬元/噸)與月份x(,且x為整數(shù))滿足關系式:,請問:該飼養(yǎng)場哪個月的利潤最大?最大利潤是多少?21.(6分)如圖是一紙杯,它的母線AC和EF延長后形成的立體圖形是圓錐,該圓錐的側面展開圖形是扇形OAB.經(jīng)測量,紙杯上開口圓的直徑是6cm,下底面直徑為4cm,母線長為EF=8cm.求扇形OAB的圓心角及這個紙杯的表面積(面積計算結果用表示).22.(8分)中華人民共和國《城市道路路內(nèi)停車泊位設置規(guī)范》規(guī)定:米以上的,可在兩側設停車泊位,路幅寬米到米的,可在單側設停車泊位,路幅寬米以下的,不能設停車泊位;米,車位寬米;米.根據(jù)上述的規(guī)定,在不考慮車位間隔線和車道間隔線的寬度的情況下,如果在一條路幅寬為米的雙向通行車道設置同一種排列方式的小型停車泊位,請回答下列問題:(1)可在該道路兩側設置停車泊位的排列方式為;(2)如果這段道路長米,那么在道路兩側最多可以設置停車泊位個.(參考數(shù)據(jù):,)23.(8分)對于二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A(2,0)和拋物線L上的點B(﹣1,n),請完成下列任務:(嘗試)(1)當t=2時,拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點坐標為;(2)判斷點A是否在拋物線L上;(3)求n的值;(發(fā)現(xiàn))通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標為.(應用)二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.24.(8分)端午節(jié)是我國的傳統(tǒng)節(jié)日,人們素有吃粽子的習俗.某商場在端午節(jié)來臨之際用4800元購進A、B兩種粽子共1100個,購買A種粽子與購買B種粽子的費用相同.已知A種粽子的單價是B種粽子單價的1.2倍.(1)求A,B兩種粽子的單價;(2)若計劃用不超過8000元的資金再次購進A,B兩種粽子共1800個,已知A、B兩種粽子的進價不變.求A種粽子最多能購進多少個?25.(10分)我市某公司用800萬元購得某種產(chǎn)品的生產(chǎn)技術后,進一步投入資金1550萬元購買生產(chǎn)設備,進行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調研發(fā)現(xiàn):該產(chǎn)品的銷售單價需要定在200元到300元之間較為合理.銷售單價(元)與年銷售量(萬件)之間的變化可近似的看作是如下表所反應的一次函數(shù):銷售單價(元)200230250年銷售量(萬件)14119(1)請求出與之間的函數(shù)關系式,并直接寫出自變量的取值范圍;(2)請說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?26.(10分)學校實施新課程改革以來,學生的學習能力有了很大提高,陳老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調查,把調查結果分成四類(:特別好,:好,:一般,:較差).并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖解答下列問題:(1)本次調查中,陳老師一共調查了______名學生;(2)將條形統(tǒng)計圖補充完整;扇形統(tǒng)計圖中類學生所對應的圓心角是_________度;(3)為了共同進步,陳老師從被調查的類和類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】直接利用無理數(shù)的定義分析得出答案.【詳解】解:,,,,,其中無理數(shù)為,,共2個數(shù).故選C.【點睛】此題考查無理數(shù),正確把握無理數(shù)的定義是解題關鍵.2、C【分析】根據(jù)拋物線y=ax2+2ax+4(a<0)可知該拋物線開口向下,可以求得拋物線的對稱軸,又因為拋物線具有對稱性,從而可以解答本題.【詳解】解:∵拋物線y=ax2+2ax+4(a<0),∴對稱軸為:x=,∴當x<?1時,y隨x的增大而增大,當x>?1時,y隨x的增大而減小,∵A(?,y1),B(?,y2),C(,y3)在拋物線上,且?<?,?0.5<,∴y3<y1<y2,故選:C.【點睛】本題考查二次函數(shù)的性質,解題的關鍵是明確二次函數(shù)具有對稱性,在對稱軸的兩側它的增減性不一樣.3、C【解析】根據(jù)軸對稱圖形和中心對稱圖形的性質進行判斷即可.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,錯誤;B.是軸對稱圖形,不是中心對稱圖形,錯誤;C.既是軸對稱圖形,也是中心對稱圖形,正確;D.是軸對稱圖形,不是中心對稱圖形,錯誤;故答案為:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的問題,掌握軸對稱圖形和中心對稱圖形的性質是解題的關鍵.4、D【分析】根據(jù)平行線分線段成比例定理列出比例式,判斷即可.【詳解】∵AD∥BE∥CF,∴,成立;,成立,故D錯誤,成立,故選D.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理,找準對應關系是解題的關鍵.5、A【分析】根據(jù)旋轉變換的性質得到旋轉變換后點A的對應點坐標,根據(jù)平移的性質解答即可.【詳解】∵點C的坐標為(﹣1,0),AC=1,∴點A的坐標為(﹣3,0),如圖所示,將Rt△ABC先繞點C順時針旋轉90°,則點A′的坐標為(﹣1,1),再向右平移3個單位長度,則變換后點A′的對應點坐標為(1,1),故選A.【點睛】本題考查的是坐標與圖形變化旋轉和平移,掌握旋轉變換、平移變換的性質是解題的關鍵.6、A【分析】根據(jù)眾數(shù)和中位數(shù)的定義求解可得.【詳解】∵這組數(shù)據(jù)中最多的數(shù)是18,∴這14名隊員年齡的眾數(shù)是18歲,∵這組數(shù)據(jù)中間的兩個數(shù)是19、19,∴中位數(shù)是=19(歲),故選:A.【點睛】本題考查眾數(shù)和中位數(shù),將一組數(shù)據(jù)從小到大的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù);一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)稱為這組數(shù)據(jù)的眾數(shù);熟練掌握定義是解題關鍵.7、C【分析】根據(jù)圓周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度數(shù).【詳解】解:∵∠ACB=∠AOB,

而∠AOB=180°-2×20°=140°,

∴∠ACB=×140°=70°.

故選:C.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.8、A【分析】利用余弦的定義可知,代入數(shù)據(jù)即可求出AC.【詳解】∵∴故選A.【點睛】本題考查根據(jù)余弦值求線段長度,熟練掌握余弦的定義是解題的關鍵.9、C【分析】根據(jù)比例的性質,若,則判斷即可.【詳解】解:故選:C.【點睛】本題主要考查了比例的性質,靈活的利用比例的性質進行比例變形是解題的關鍵.10、B【分析】由題意直接根據(jù)三角函數(shù)的定義進行分析即可求解.【詳解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假設BC=k,AC=2k,∴AB=k,∴sinA==.故選:B.【點睛】本題考查同角三角函數(shù)的計算,解題本題的關鍵是明確sinA等于對邊與斜邊的比.二、填空題(每小題3分,共24分)11、6【分析】接運用平行線分線段成比例定理列出比例式,借助已知條件即可解決問題.【詳解】,∵DE∥BC,∴,即,解得:,故答案為:.【點睛】本題主要考查了平行線分線段成比例定理及其應用問題;運用平行線分線段成比例定理正確寫出比例式是解題的關鍵.12、【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征可分別計算出y1,y2,y3的值即可判斷.【詳解】∵A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函數(shù)y=﹣圖象上的三個點,∴,,,∴,故答案為:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,由反比例函數(shù)確定函數(shù)值即可.13、2【分析】根據(jù)一元二次方程的解的定義,把x=2代入x2-3x+k=0得4-6+k=0,然后解關于k的方程即可.【詳解】把x=2代入x2?3x+k=0得4?6+k=0,解得k=2.故答案為2.【點睛】本題考查的知識點是一元二次方程的解,解題的關鍵是熟練的掌握一元二次方程的解.14、1【分析】將方程的根-2代入原方程求出m的值,再解方程即可求解.【詳解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程為:,解方程得:.故答案為:1.【點睛】本題考查的知識點是解一元二次方程,根據(jù)方程的一個解求出方程中參數(shù)的值是解此題的關鍵.15、3【分析】由四條線段a、2、6、a+1成比例,根據(jù)成比例線段的定義,即可得=,即可求得a的值.【詳解】解:∵四條線段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合題意,舍去).故答案為3.【點睛】本題考查了線段成比例的定義:若四條線段a,b,c,d成比例,則有a:b=c:d.16、6【分析】如圖,過點F作交OA于點G,由可得OA、BF與OG的關系,設,則,結合可得點B的坐標,將點E、點F代入中即可求出k值.【詳解】解:如圖,過點F作交OA于點G,則設,則,即雙曲線過點,點化簡得,即解得,即.故答案為:6.【點睛】本題主要考查了反比例函數(shù)的圖像,靈活利用坐標表示線段長和三角形面積是解題的關鍵.17、19.2m【分析】根據(jù)在同一時物體的高度和影長成正比,設出教學樓高度即可列方程解答.【詳解】設教學樓高度為xm,列方程得:解得x=19.2,故教學樓的高度為19.2m.故答案為:19.2m.【點睛】本題考查了相似三角形的應用,解題時關鍵是找出相等的比例關系,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.18、5cm【分析】先求出BF、CF的長,利用勾股定理列出關于EF的方程,即可解決問題.【詳解】∵四邊形ABCD為矩形,∴∠B=∠C=90°;由題意得:AF=AD=BC=10,ED=EF,設EF=x,則EC=8?x;由勾股定理得:BF2=AF2?AB2=36,∴BF=6,CF=10?6=4;由勾股定理得:x2=42+(8?x)2,解得:x=5,故答案為:5cm.【點睛】該題主要考查了翻折變換及其應用問題;解題的關鍵是靈活運用勾股定理等幾何知識來分析、判斷、推理或解答.三、解答題(共66分)19、(1)見解析;(2)【分析】(1)根據(jù)畫旋轉圖形的方法畫出繞點按順時針方向旋轉后的即可;(2)由題意根據(jù)旋轉的性質利用圓弧公式,即可求出點旋轉到點所經(jīng)過的路線長.【詳解】解:(1)的作圖如下,(2)由題意可得:AC=,所以.【點睛】本題考查坐標系中點的坐標和圖形的旋轉以及勾股定理及弧長公式的應用,掌握相關的基本概念是解題關鍵.20、(1)(,x為整數(shù)),(,x為整數(shù));(2)該飼養(yǎng)場一月份的利潤最大,最大利潤是203萬元【分析】(1)由圖可知當時,,當時,利用待定系數(shù)法可求出解析式;(2)設生豬飼養(yǎng)場月利潤為W,分段討論函數(shù)的最值,進行比較即可得出最大利潤及月份.【詳解】解:(1)當時,;當時,設,將(4,140),(12,220)代入得,解得∴∴y與x的函數(shù)關系式為:(,x為整數(shù)),(,x為整數(shù))(2)設生豬飼養(yǎng)場月利潤為W,當(x為整數(shù))時,,因為,W隨x的增大而減小,所以當x取最小值1時,萬元當(x為整數(shù))時,,因為,所以當時,萬元;綜上所述,該飼養(yǎng)場一月份的利潤最大,最大利潤是203萬元【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式,以及一次函數(shù)和二次函數(shù)的最值問題,熟練掌握待定系數(shù)法和二次函數(shù)的最值求法是解題的關鍵.21、扇形OAB的圓心角為45°,紙杯的表面積為44.【解析】試題分析:設扇形OAB的圓心角為n°,然后根據(jù)弧長AB等于紙杯上開口圓周長和弧長CD等于紙杯下底面圓周長,列關于n和OF的方程組,解方程組可得出n和OF的值,然后根據(jù)紙杯表面積=紙杯側面積+紙杯底面積=扇形OAB的面積-扇形OCD的面積+紙杯底面積,計算即可.試題解析:設扇形OAB的圓心角為n°弧長AB等于紙杯上開口圓周長:弧長CD等于紙杯下底面圓周長:可列方程組,解得所以扇形OAB的圓心角為45°,OF等于16cm紙杯表面積=紙杯側面積+紙杯底面積=扇形OAB的面積-扇形OCD的面積+紙杯底面積即S紙杯表面積==考點:錐的側面展開圖、弧長公式、扇形面積公式.22、(1)平行式或傾斜式.(2)1.【分析】(1)對應三種方式分別驗證是否合適即可;(2)分別按照第(1)問選出來的排列方式計算停車泊位,進行比較取較大者即可.【詳解】(1)除去兩車道之后道路寬因為要在道路兩旁設置停車泊位,所以每個停車泊位的寬必須小于等于3m,所以方式3垂直式不合適,排除;方式1平行式滿足要求,對于房市,它的寬度為,要滿足要求,必須有,即,所以當時,方式2傾斜式也能滿足要求.故答案為平行式或傾斜式(2)若選擇平行式,則可設置停車泊位的數(shù)量為(個)若選擇傾斜式,每個停車泊位的寬度為,要使停車泊位盡可能多,就要使寬度盡可能小,所以取,此時每個停車位的寬度為,所以可設置停車泊位的數(shù)量為(個)故答案為1【點睛】本題主要考查理解能力以及銳角三角函數(shù)的應用,掌握銳角三角函數(shù)的定義是解題的關鍵.23、[嘗試](1)(1,﹣2);(2)點A在拋物線L上;(3)n=1;[發(fā)現(xiàn)](2,0),(﹣1,1);[應用]不是,理由見解析.【分析】[嘗試]

(1)將t的值代入“再生二次函數(shù)”中,通過配方可得到頂點的坐標;

(2)將點A的坐標代入拋物線L直接進行驗證即可;

(3)已知點B在拋物線L上,將該點坐標代入拋物線L的解析式中直接求解,即可得到n的值.

[發(fā)現(xiàn)]

將拋物線L展開,然后將含t值的式子整合到一起,令該式子為0(此時無論t取何值都不會對函數(shù)值產(chǎn)生影響),即可求出這個定點的坐標.

[應用]

將[發(fā)現(xiàn)]中得到的兩個定點坐標代入二次函數(shù)y=-3x2+5x+2中進行驗證即可.【詳解】解:[嘗試](1)∵將t=2代入拋物線L中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此時拋物線的頂點坐標為:(1,﹣2).(2)∵將x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴點A(2,0)在拋物線L上.(3)將x=﹣1代入拋物線L的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=1.[發(fā)現(xiàn)]∵將拋物線L的解析式展開,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4當x=2時,y=0,當x=-1時,y=1,與t無關,∴拋物線L必過定點(2,0)、(﹣1,1).[應用]將x=2代入y=﹣3x2+5x+2,y=0,即點A在拋物線上.將x=﹣1代入y=﹣3x2+5x+2,計算得:y=﹣1≠1,即可得拋物線y=﹣3x2+5x+2不經(jīng)過點B,∴二次函數(shù)y=﹣3x2+5x+2不是二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4的一個“再生二次函數(shù)”.【點睛】本題考查二次函數(shù)的新型定義問題,熟練掌握二次函數(shù)的圖像與性質,理解“再生二次函數(shù)”的定義是解題的關鍵.24、(1)A種粽子單價為4元/個,B種粽子單價為4.1元/個;(2)A種粽子最多能購進100個【分析】(1)設B種粽子單價為x元/個,則A種粽子單價為1.2x元/個,根據(jù)數(shù)量=總價÷單價結合用4100元購進A、B兩種粽子1100個,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)設購進A種粽子m個,則購進B種粽子(1100﹣m)個,根據(jù)總價=單價×數(shù)量結合總價不超過1000元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.【詳解】解:(1)設B種粽子單價為x元/個,則A種粽子單價為1.2x元/個,根據(jù)題意,得:=1100,解得:x=4,經(jīng)檢驗,x=4是原方程的解,且符合題意,∴1.2x=4.1.答:A種粽子單價為4元/個,B種粽子單價為4.1元/個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論