




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.三角形的一條中位線將這個三角形分成的一個小三角形與原三角形的面積之比等于()A.1: B.1:2 C.1:4 D.1:1.62.已知,是圓的半徑,點,在圓上,且,若,則的度數(shù)為()A. B. C. D.3.如圖,Rt△ABC中,∠C=90°,AC=3,BC=1.分別以AB、AC、BC為邊在AB的同側(cè)作正方形ABEF、ACPQ、BCMN,四塊陰影部分的面積分別為S1、S2、S3、S1.則S1﹣S2+S3+S1等于()A.1 B.6 C.8 D.124.關(guān)于的一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.不能確定5.下列事件中,屬于必然事件的是()A.明天我市下雨B.拋一枚硬幣,正面朝下C.購買一張福利彩票中獎了D.?dāng)S一枚骰子,向上一面的數(shù)字一定大于零6.如圖所示,給出下列條件:①;②;③;④,其中單獨能夠判定的個數(shù)為()A. B. C. D.7.下列事件不屬于隨機(jī)事件的是()A.打開電視正在播放新聞聯(lián)播 B.某人騎車經(jīng)過十字路口時遇到紅燈C.拋擲一枚硬幣,出現(xiàn)正面朝上 D.若今天星期一,則明天是星期二8.設(shè),則代數(shù)式的值為()A.-6 B.-5 C. D.9.如果關(guān)于x的一元二次方程x2+4x+a=0的兩個不相等實數(shù)根x1,x2滿足x1x2﹣2x1﹣2x2﹣5=0,那么a的值為()A.3 B.﹣3 C.13 D.﹣1310.如圖,在平面直角坐標(biāo)系中,與軸相切于點,為的直徑,點在函數(shù)的圖象上,若的面積為,則的值為()
A.5 B. C.10 D.15二、填空題(每小題3分,共24分)11.拋物線經(jīng)過點,則這條拋物線的對稱軸是直線__________.12.如圖,在△ABC中,P是AB邊上的點,請補充一個條件,使△ACP∽△ABC,這個條件可以是:___(寫出一個即可),13.函數(shù)中,自變量的取值范圍是_____.14.若能分解成兩個一次因式的積,則整數(shù)k=_________.15.如圖,在平面直角坐標(biāo)系中,已知A(1.5,0),D(4.5,0),△ABC與△DEF位似,原點O是位似中心.若DE=7.5,則AB=_____.16.已知實數(shù)m,n滿足,,且,則=.17.若最簡二次根式與是同類根式,則________.18.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點E的坐標(biāo)為_________________________.三、解答題(共66分)19.(10分)尺規(guī)作圖:已知△ABC,如圖.(1)求作:△ABC的外接圓⊙O;(2)若AC=4,∠B=30°,則△ABC的外接圓⊙O的半徑為.20.(6分)先化簡:,再求代數(shù)式的值,其中是方程的一個根.21.(6分)如圖,已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側(cè))與y軸交于C點.(1)求拋物線的解析式和A、B兩點的坐標(biāo);(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;(3)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當(dāng)MN=3時,求M點的坐標(biāo).22.(8分)如圖,AB是的直徑,點C、D在上,且AD平分,過點D作AC的垂線,與AC的延長線相交于E,與AB的延長線相交于點F,G為AB的下半圓弧的中點,DG交AB于H,連接DB、GB.證明EF是的切線;求證:;已知圓的半徑,,求GH的長.23.(8分)在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數(shù)的關(guān)系解析式,x滿足什么值時y﹤0?(2)點p是直線AC上方的拋物線上一動點,是否存在點P,使△ACP面積最大?若存在,求出點P的坐標(biāo);若不存在,說明理由(3)點M為拋物線上一動點,在x軸上是否存在點Q,使以A、C、M、Q為頂點的四邊形是平行四邊形?若存在,直接寫出點Q的坐標(biāo);若不存在,說明理由.24.(8分)解方程:(x+3)(x﹣6)=﹣1.25.(10分)在菱形中,,點是射線上一動點,以為邊向右側(cè)作等邊,點的位置隨點的位置變化而變化.(1)如圖1,當(dāng)點在菱形內(nèi)部或邊上時,連接,與的數(shù)量關(guān)系是,與的位置關(guān)系是;(2)當(dāng)點在菱形外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).(3)如圖4,當(dāng)點在線段的延長線上時,連接,若,,求四邊形的面積.26.(10分)矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,A、C兩點的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點D.(1)求點D的坐標(biāo);(2)若拋物線經(jīng)過A、D兩點,試確定此拋物線的解析式;(3)設(shè)(2)中的拋物線的對稱軸與直線AD交于點M,點P為對稱軸上一動點,以P、A、M為頂點的三角形與△ABD相似,求符合條件的所有點P的坐標(biāo).
參考答案一、選擇題(每小題3分,共30分)1、C【分析】中位線將這個三角形分成的一個小三角形與原三角形相似,根據(jù)中位線定理,可得兩三角形的相似比,進(jìn)而求得面積比.【詳解】根據(jù)三角形中位線性質(zhì)可得,小三角形與原三角形相似比為1:2,則其面積比為:1:4,故選C.【點睛】本題考查了三角形中位線的性質(zhì),比較簡單,關(guān)鍵是知道面積比等于相似比的平方.2、D【分析】連接OC,根據(jù)圓周角定理求出∠AOC,再根據(jù)平行得到∠OCB,利用圓內(nèi)等腰三角形即可求解.【詳解】連接CO,∵∴∠AOC=2∵∴∠OCB=∠AOC=∵OC=BO,∴=∠OCB=故選D.【點睛】此題主要考查圓周角定理,解題的關(guān)鍵是熟知圓的基本性質(zhì)及圓周角定理的內(nèi)容.3、B【解析】本題先根據(jù)正方形的性質(zhì)和等量代換得到判定全等三角形的條件,再根據(jù)全等三角形的判定定理和面積相等的性質(zhì)得到S、S、、與△ABC的關(guān)系,即可表示出圖中陰影部分的面積和.本題的著重點是等量代換和相互轉(zhuǎn)化的思想.【詳解】解:如圖所示,過點F作FG⊥AM交于點G,連接PF.根據(jù)正方形的性質(zhì)可得:AB=BE,BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD,BC=BD所以△ABC≌△EBD(SAS),故S=,同理可證,△KME≌△TPF,△FGK≌△ACT,因為∠QAG=∠AGF=∠AQF=90,所以四邊形AQFG是矩形,則QF//AG,又因為QP//AC,所以點Q、P,F三點共線,故S+S=,S=.因為∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA,在△AQF和△ACB中,因為∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA),同理可證△AQF≌△BCA,故S1﹣S2+S3+S1==31=6,故本題正確答案為B.【點睛】本題主要考查正方形和全等三角形的判定與性質(zhì).4、A【分析】根據(jù)根的判別式即可求解判斷.【詳解】∵△=b2-4ac=m2+4>0,故方程有兩個不相等的實數(shù)根,故選A.【點睛】此題主要考查一元二次方程根的判別式,解題的關(guān)鍵是熟知判別式的性質(zhì).5、D【分析】根據(jù)定義進(jìn)行判斷.【詳解】解:必然事件就是一定發(fā)生的事件,隨機(jī)事件是可能發(fā)生也可能不發(fā)生的事件,由必然事件和隨機(jī)事件的定義可知,選項A,B,C為隨機(jī)事件,選項D是必然事件,故選D.【點睛】本題考查必然事件和隨機(jī)事件的定義.6、B【解析】由已知△ABC與△ABD中∠A為公共角,所以只要再找一組角相等,或一組對應(yīng)邊成比例即可解答.【詳解】解::①∵,∠A為公共角,∴;②∵,∠A為公共角,∴;③雖然,但∠A不是已知的比例線段的夾角,所以兩個三角形不相似;④∵,∴,又∵∠A為公共角,∴.綜上,單獨能夠判定的個數(shù)有3個,故選B.【點睛】本題考查了相似三角形的判定,屬于基礎(chǔ)題目,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.7、D【分析】不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.據(jù)此可判斷出結(jié)論.【詳解】A.打開電視正在播放新聞聯(lián)播,是隨機(jī)事件,不符合題意;B.某人騎車經(jīng)過十字路口時遇到紅燈,是隨機(jī)事件,不符命題意;C.拋擲一枚硬幣,出現(xiàn)正面朝上,是隨機(jī)事件,不符合題意,D.若今天星期一,則明天是星期二,是必然事件,符合題意.故選:D.【點睛】此題考查了必然事件、不可能事件、隨機(jī)事件的概念.關(guān)鍵是理解不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.8、A【分析】把a2+2a-12變形為a2+2a+1-13,根據(jù)完全平方公式得出(a+1)2-13,代入求出即可.【詳解】∵,∴=a2+2a+1-13=(a+1)2-13=(-1+1)2-13=7-13=-6.故選A.【點睛】本題考查了二次根式的化簡,完全平方公式的運用,主要考查學(xué)生的計算能力.題目比較好,難度不大.9、B【分析】
【詳解】∵x1,x2是關(guān)于x的一元二次方程x2+4x+a=0的兩個不相等實數(shù)根,∴x1+x2=﹣4,x1x2=a.∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+1=0,解得,a=﹣1.故選B10、C【分析】首先設(shè)點C坐標(biāo)為,根據(jù)反比例函數(shù)的性質(zhì)得出,然后利用圓的切線性質(zhì)和三角形OAB面積構(gòu)建等式,即可得解.【詳解】設(shè)點C坐標(biāo)為,則∵與軸相切于點,∴CB⊥OB∵的面積為∴,即∵為的直徑∴BC=2AB∴故選:C.【點睛】此題主要考查圓的切線性質(zhì)以及反比例函數(shù)的性質(zhì),熟練掌握,即可解題.二、填空題(每小題3分,共24分)11、【分析】根據(jù)拋物線的軸對稱性,即可得到答案.【詳解】∵拋物線經(jīng)過點,且點,點關(guān)于直線x=1對稱,∴這條拋物線的對稱軸是:直線x=1.故答案是:.【點睛】本題主要考查二次函數(shù)的圖象與性質(zhì),掌握拋物線的軸對稱性,是解題的關(guān)鍵.12、∠ACP=∠B(或).【分析】由于△ACP與△ABC有一個公共角,所以可利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似或有兩組角對應(yīng)相等的兩個三角形相似進(jìn)行添加條件.【詳解】解:∵∠PAC=∠CAB,∴當(dāng)∠ACP=∠B時,△ACP∽△ABC;當(dāng)時,△ACP∽△ABC.故答案為:∠ACP=∠B(或).【點睛】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似:有兩組角對應(yīng)相等的兩個三角形相似.13、【分析】根據(jù)被開方式是非負(fù)數(shù)列式求解即可.【詳解】依題意,得,解得:,故答案為.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當(dāng)函數(shù)解析式是整式時,字母可取全體實數(shù);②當(dāng)函數(shù)解析式是分式時,考慮分式的分母不能為0;③當(dāng)函數(shù)解析式是二次根式時,被開方數(shù)為非負(fù)數(shù).④對于實際問題中的函數(shù)關(guān)系式,自變量的取值除必須使表達(dá)式有意義外,還要保證實際問題有意義.14、【分析】根據(jù)題意設(shè)多項式可以分解為:(x+ay+c)(2x+by+d),則2c+d=k,根據(jù)cd=6,求出所有符合條件的c、d的值,然后再代入ad+bc=0求出a、b的值,與2a+b=1聯(lián)立求出a、b的值,a、b是整數(shù)則符合,否則不符合,最后把符合條件的值代入k進(jìn)行計算即可.【詳解】解:設(shè)能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6時,ad+bc=6a+b=0,與2a+b=1聯(lián)立求解得,或c=6,d=1時,ad+bc=a+6b=0,與2a+b=1聯(lián)立求解得,②c=2,d=3時,ad+bc=3a+2b=0,與2a+b=1聯(lián)立求解得,或c=3,d=2時,ad+bc=2a+3b=0,與2a+b=1聯(lián)立求解得,③c=-2,d=-3時,ad+bc=-3a-2b=0,與2a+b=1聯(lián)立求解得,或c=-3,d=-2,ad+bc=-2a-3b=0,與2a+b=1聯(lián)立求解得,④c=-1,d=-6時,ad+bc=-6a-b=0,與2a+b=1聯(lián)立求解得,或c=-6,d=-1時,ad+bc=-a-6b=0,與2a+b=1聯(lián)立求解得,∴c=2,d=3時,c=-2,d=-3時,符合,∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,∴整數(shù)k的值是1,-1.故答案為:.【點睛】本題考查因式分解的意義,設(shè)成兩個多項式的積的形式是解題的關(guān)鍵,要注意6的所有分解結(jié)果,還需要用a、b進(jìn)行驗證,注意不要漏解.15、2.1.【分析】利用以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k得到位似比為,然后根據(jù)相似的性質(zhì)計算AB的長.【詳解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC與△DEF位似,原點O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案為2.1.【點睛】本題考查了位似變換:在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k.16、.【解析】試題分析:由時,得到m,n是方程的兩個不等的根,根據(jù)根與系數(shù)的關(guān)系進(jìn)行求解.試題解析:∵時,則m,n是方程3x2﹣6x﹣5=0的兩個不相等的根,∴,.∴原式===,故答案為.考點:根與系數(shù)的關(guān)系.17、1【分析】根據(jù)同類二次根式的定義可得a+2=5a-2,即可求出a值.【詳解】∵最簡二次根式與是同類根式,∴a+2=5a-2,解得:a=1.故答案為:1【點睛】本題考查了同類二次根式:把各二次根式化為最簡二次根式后若被開方數(shù)相同,那么這樣的二次根式叫同類二次根式;熟記定義是解題關(guān)鍵.18、(,2).【詳解】解:如圖,當(dāng)點B與點D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(biāo)(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.三、解答題(共66分)19、(1)答案見解析;(2)1.【分析】(1)確定三角形的外接圓的圓心,根據(jù)其是三角形邊的垂直平分線的交點進(jìn)行確定即可;(2)連接OA,OC,先證明△AOC是等邊三角形,從而得到圓的半徑.【詳解】解:(1)作法如下:①作線段AB的垂直平分線,②作線段BC的垂直平分線,③以兩條垂直平分線的交點O為圓心,OA長為半圓畫圓,則圓O即為所求作的圓;(2)連接OA,OC,∵∠B=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等邊三角形,∵AC=1,∴OA=OC=1,即圓的半徑是1,故答案為1.【點睛】本題考查了尺規(guī)作三角形外接圓、圓中的計算問題,解題的關(guān)鍵是熟知“三角形邊的垂直平分線的交點是三角形的外接圓的圓心”.20、;1.【分析】首先對括號內(nèi)的分式進(jìn)行通分,然后把除法轉(zhuǎn)化為乘法即可化簡,最后整體代值計算.【詳解】解:,,,,;∵是方程的一個根,∴,∴,∴,∴原式=【點睛】本題考查了分式的化簡求值和一元二次方程的根,熟知整體代入是解答此題關(guān)鍵.21、(1),點A的坐標(biāo)為(-2,0),點B的坐標(biāo)為(8,0);(2)存在點P,使△PBC的面積最大,最大面積是16,理由見解析;(3)點M的坐標(biāo)為(4-2,)、(2,6)、(6,4)或(4+2,-).【分析】(1)由拋物線的對稱軸為直線x=3,利用二次函數(shù)的性質(zhì)即可求出a值,進(jìn)而可得出拋物線的解析式,再利用二次函數(shù)圖象上點的坐標(biāo)特征,即可求出點A、B的坐標(biāo);(2)利用二次函數(shù)圖象上點的坐標(biāo)特征可求出點C的坐標(biāo),由點B、C的坐標(biāo),利用待定系數(shù)法即可求出直線BC的解析式,假設(shè)存在,設(shè)點P的坐標(biāo)為(x,),過點P作PD//y軸,交直線BC于點D,則點D的坐標(biāo)為(x,),PD=-x2+2x,利用三角形的面積公式即可得出三角形PBC的面積關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;(3)設(shè)點M的坐標(biāo)為(m,),則點N的坐標(biāo)為(m,),進(jìn)而可得出MN,結(jié)合MN=3即可得出關(guān)于m的含絕對值符號的一元二次方程,解之即可得出結(jié)論.【詳解】(1)拋物線的對稱軸是直線,,解得:,拋物線的解析式為.當(dāng)時,,解得:,,點的坐標(biāo)為,點的坐標(biāo)為.(2)當(dāng)時,,點的坐標(biāo)為.設(shè)直線的解析式為.將、代入,,解得:,直線的解析式為.假設(shè)存在,設(shè)點的坐標(biāo)為,過點作軸,交直線于點,則點的坐標(biāo)為,如圖所示.,.,當(dāng)時,的面積最大,最大面積是16.,存在點,使的面積最大,最大面積是16.(3)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,.又,.當(dāng)時,有,解得:,,點的坐標(biāo)為或;當(dāng)或時,有,解得:,,點的坐標(biāo)為,或,.綜上所述:點的坐標(biāo)為,、、或,.【點睛】本題考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)解析式以及三角形的面積,解題的關(guān)鍵是:(1)利用二次函數(shù)的性質(zhì)求出a的值;(2)根據(jù)三角形的面積公式找出關(guān)于x的函數(shù)關(guān)系式;(3)根據(jù)MN的長度,找出關(guān)于m的含絕對值符號的一元二次方程.22、(1)詳見解析;(1)詳見解析;(3).【解析】(1)由題意可證OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切線;(1)由同弧所對的圓周角相等,可得∠DAB=∠DGB,由余角的性質(zhì)可得∠DGB=∠BDF;(3)由題意可得∠BOG=90°,根據(jù)勾股定理可求GH的長.【詳解】解:(1)證明:連接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切線(1)∵AB是⊙O的直徑,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切線,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)連接OG,∵G是半圓弧中點,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=1.∴GH==.【點睛】本題考查了切線的判定和性質(zhì),角平分線的性質(zhì),勾股定理,圓周角定理等知識,熟練運用切線的判定和性質(zhì)解決問題是本題的關(guān)鍵.23、(1),或;(2)P;(3)【分析】(1)將點A(﹣3,0),B(1,0)帶入y=ax2+bx+2得到二元一次方程組,解得即可得出函數(shù)解析式;又從圖像可以看出x滿足什么值時y﹤0;(2)設(shè)出P點坐標(biāo),利用割補法將△ACP面積轉(zhuǎn)化為,帶入各個三角形面積算法可得出與m之間的函數(shù)關(guān)系,分析即可得出面積的最大值;(3)分兩種情況討論,一種是CM平行于x軸,另一種是CM不平行于x軸,畫出點Q大概位置,利用平行四邊形性質(zhì)即可得出關(guān)于點Q坐標(biāo)的方程,解出即可得到Q點坐標(biāo).【詳解】解:(1)將A(﹣3,0),B(1,0)兩點帶入y=ax2+bx+2可得:解得:∴二次函數(shù)解析式為.由圖像可知,當(dāng)或時y﹤0;綜上:二次函數(shù)解析式為,當(dāng)或時y﹤0;(2)設(shè)點P坐標(biāo)為,如圖連接PO,作PM⊥x軸于M,PN⊥y軸于N.PM=,PN=,AO=3.當(dāng)時,,所以O(shè)C=2,∵∴函數(shù)有最大值,當(dāng)時,有最大值,此時;所以存在點,使△ACP面積最大.(3)存在,假設(shè)存在點Q使以A、C、M、Q為頂點的四邊形是平行四邊形①若CM平行于x軸,如下圖,有符合要求的兩個點此時=∵CM∥x軸,∴點M、點C(0,2)關(guān)于對稱軸對稱,∴M(﹣2,2),∴CM=2.由=;②若CM不平行于x軸,如下圖,過點M作MG⊥x軸于點G,易證△MGQ≌△COA,得QG=OA=3,MG=OC=2,即.設(shè)M(x,﹣2),則有,解得:.又QG=3,∴,∴綜上所述,存在點P使以A、C、M、Q為頂點的四邊形是平行四邊形,Q點坐標(biāo)為:.【點睛】本題考查二次函數(shù)與幾何綜合題目,涉及到用待定系數(shù)法求二次函數(shù)解析式,通過函數(shù)圖像得出關(guān)于二次函數(shù)不等式的解集,平面直角坐標(biāo)系中三角形面積的計算通常利用割補法,并且將所要求得點的坐標(biāo)設(shè)出來,得出相關(guān)方程;在解答(3)的時候注意先畫出大概圖像再利用平行四邊形性質(zhì)進(jìn)行計算和分析.24、x=5或x=﹣2.【分析】先把方程化為一元二次方程的一般形式,然后再運用因式分解法解方程即可解答.【詳解】將方程整理為一般式,得:x2﹣3x﹣10=0,則(x﹣5)(x+2)=0,∴x﹣5=0或x+2=0,解得x=5或x=﹣2.【點睛】本題考查一元二次方程的解法,屬于基礎(chǔ)題,解題的關(guān)鍵是熟練掌握一元二次方程的四種解法.25、(1)BP=CE;CE⊥AD;(2)成立,理由見解析;(3).【解析】(1)①連接AC,證明△ABP≌△ACE,根據(jù)全等三角形的對應(yīng)邊相等即可證得BP=CE;②根據(jù)菱形對角線平分對角可得,再根據(jù)△ABP≌△ACE,可得,繼而可推導(dǎo)得出,即可證得CE⊥AD;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,利用(1)的方法進(jìn)行證明即可;(3)連接AC交BD于點O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的長,AP長,由△APE是等邊三角形,求得,的長,再根據(jù),進(jìn)行計算即可得.【詳解】(1)①BP=CE,理由如下:連接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;②CE⊥AD,∵菱形對角線平分對角,∴,∵△ABP≌△ACE,∴,∵,∴,∴,∴,∴CF⊥AD,即CE⊥AD;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:連接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 益陽醫(yī)學(xué)高等??茖W(xué)校《人才素質(zhì)測評與選拔》2023-2024學(xué)年第二學(xué)期期末試卷
- 做賬實操-機(jī)械制造公司的賬務(wù)處理分錄
- 鄭州經(jīng)貿(mào)學(xué)院《網(wǎng)路原理與技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 陜西服裝工程學(xué)院《專業(yè)課程綜合2(酒店)》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴陽人文科技學(xué)院《環(huán)境與食品安全》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025山西省建筑安全員-C證考試題庫
- 廣西財經(jīng)學(xué)院《老年社會工作》2023-2024學(xué)年第二學(xué)期期末試卷
- 大連理工大學(xué)城市學(xué)院《地理空間數(shù)據(jù)庫》2023-2024學(xué)年第二學(xué)期期末試卷
- 常德職業(yè)技術(shù)學(xué)院《藥劑學(xué)A》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西金融職業(yè)學(xué)院《公共危機(jī)治理》2023-2024學(xué)年第二學(xué)期期末試卷
- 物聯(lián)網(wǎng)項目實施進(jìn)度計劃表
- 學(xué)校校園安全巡邏情況登記表
- DLT5210.4-2018熱工施工質(zhì)量驗收表格
- 中國-各省市地圖可編輯課件
- (兒科學(xué)課件)腎病綜合征
- 光纜線路工程段終版施工圖
- 2023年最新的郭氏宗祠的對聯(lián)大全
- 礦井年度災(zāi)害預(yù)防和處理計劃
- 畢業(yè)論文-基于Java Web的模擬駕校考試系統(tǒng)設(shè)計與實現(xiàn)
- 駱駝祥子1一24章批注
- 新部編人教版四年級下冊道德與法治全冊教案(教學(xué)設(shè)計)
評論
0/150
提交評論