2022年江蘇省宜興市數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2022年江蘇省宜興市數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2022年江蘇省宜興市數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2022年江蘇省宜興市數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2022年江蘇省宜興市數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.反比例函數(shù)y=的圖象經(jīng)過點(2,5),若點(1,n)在此反比例函數(shù)的圖象上,則n等于()A.10 B.5 C.2 D.2.用配方法解一元二次方程時,此方程可變形為()A. B. C. D.3.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.4.二次函數(shù)的圖象如圖所示,反比例函數(shù)與一次函數(shù)在同一平面直角坐標(biāo)系中的大致圖象是A. B. C. D.5.如圖,在△ABC中,點D、E分別在邊AB、AC上,下列條件中不能判斷△ABC∽△AED的是()A.∠AED=∠B B.∠ADE=∠C C. D.6.如圖,正方形OABC繞著點O逆時針旋轉(zhuǎn)40°得到正方形ODEF,連接AF,則∠OFA的度數(shù)是()A.20° B.25° C.30° D.35°7.對于拋物線,下列說法中錯誤的是()A.頂點坐標(biāo)為B.對稱軸是直線C.當(dāng)時,隨的增大減小D.拋物線開口向上8.如圖,在中,,垂足為點,一直角三角板的直角頂點與點重合,這塊三角板饒點旋轉(zhuǎn),兩條直角邊始終與邊分別相交于,則在運(yùn)動過程中,與的關(guān)系是()A.一定相似 B.一定全等 C.不一定相似 D.無法判斷9.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個10.如圖,AB是半圓的直徑,AB=2r,C、D為半圓的三等分點,則圖中陰影部分的面積是()。A.πr2 B.πr2 C.πr2 D.πr2二、填空題(每小題3分,共24分)11.若點A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函數(shù)的圖象上,則y1、y2、y3的大小關(guān)系是_________.12.小球在如圖6所示的地板上自由滾動,并隨機(jī)停留在某塊正方形的地磚上,則它停在白色地磚上的概率是____.

13.如圖,△ABC三個頂點的坐標(biāo)分別為A(2,2),B(4,2),C(6,4),以原點為位似中心,將△ABC縮小,使變換得到的△DEF與△ABC對應(yīng)邊的比為1∶2,則線段AC的中點P變換后對應(yīng)點的坐標(biāo)為____.14.有4根細(xì)木棒,它們的長度分別是2cm、4cm、6cm、8cm.從中任取3根恰好能搭成一個三角形的概率是_____.15.小明制作了十張卡片,上面分別標(biāo)有1~10這是個數(shù)字.從這十張卡片中隨機(jī)抽取一張恰好能被4整除的概率是__________.16.某校五個綠化小組一天的植樹的棵數(shù)如下:9,10,12,x,1.已知這組數(shù)據(jù)的平均數(shù)是10,那么這組數(shù)據(jù)的方差是_____.17.如圖,⊙M的半徑為4,圓心M的坐標(biāo)為(6,8),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關(guān)于原點O對稱,則AB的最小值為____.18.如圖,⊙O的半徑為2,AB是⊙O的切線,A.為切點.若半徑OC∥AB,則陰影部分的面積為________.三、解答題(共66分)19.(10分)解方程:x2-7x-18=0.20.(6分)已知反比例函數(shù)y=(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個公共點,求k的值;(2)如圖,反比例函數(shù)y=(1≤x≤4)的圖象記為曲線Cl,將Cl向左平移2個單位長度,得曲線C2,請在圖中畫出C2,并直接寫出C1平移至C2處所掃過的面積.21.(6分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由改為,已知原傳送帶長為米.(1)求新傳送帶的長度;(2)如果需要在貨物著地點的左側(cè)留出2米的通道,試判斷距離點5米的貨物是否需要挪走,并說明理由.(參考數(shù)據(jù):,.)22.(8分)如圖,矩形中,是邊上一動點,過點的反比例函數(shù)的圖象與邊相交于點.(1)點運(yùn)動到邊的中點時,求反比例函數(shù)的表達(dá)式;(2)連接,求的值.23.(8分)如圖,已知點B的坐標(biāo)是(-2,0),點C的坐標(biāo)是(8,0),以線段BC為直徑作⊙A,交y軸的正半軸于點D,過B、C、D三點作拋物線.(1)求拋物線的解析式;(2)連結(jié)BD,CD,點E是BD延長線上一點,∠CDE的角平分線DF交⊙A于點F,連結(jié)CF,在直線BE上找一點P,使得△PFC的周長最小,并求出此時點P的坐標(biāo);(3)在(2)的條件下,拋物線上是否存在點G,使得∠GFC=∠DCF,若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.24.(8分)如圖,AB是⊙O的直徑,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度數(shù);(2)若AD=,求DB的長.25.(10分)對于平面直角坐標(biāo)系中的兩個圖形K1和K2,給出如下定義:點G為圖形K1上任意一點,點H為K2圖形上任意一點,如果G,H兩點間的距離有最小值,則稱這個最小值為圖形K1和K2的“近距離”。如圖1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),邊長為的正方形PQMN,對角線NQ平行于x軸或落在x軸上.(1)填空:①原點O與線段BC的“近距離”為;②如圖1,正方形PQMN在△ABC內(nèi),中心O’坐標(biāo)為(m,0),若正方形PQMN與△ABC的邊界的“近距離”為1,則m的取值范圍為;(2)已知拋物線C:,且-1≤x≤9,若拋物線C與△ABC的“近距離”為1,求a的值;(3)如圖2,已知點D為線段AB上一點,且D(5,-2),將△ABC繞點A順時針旋轉(zhuǎn)α(0o<α≤180o),將旋轉(zhuǎn)中的△ABC記為△AB’C’,連接DB’,點E為DB’的中點,當(dāng)正方形PQMN中心O’坐標(biāo)為(5,-6),直接寫出在整個旋轉(zhuǎn)過程中點E運(yùn)動形成的圖形與正方形PQMN的“近距離”.26.(10分)某商場要經(jīng)營一種新上市的文具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案方案A:該文具的銷售單價高于進(jìn)價且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元請比較哪種方案的最大利潤更高,并說明理由

參考答案一、選擇題(每小題3分,共30分)1、A【解析】解:因為反比例函數(shù)y=的圖象經(jīng)過點(2,5),所以k=所以反比例函數(shù)的解析式為y=,將點(1,n)代入可得:n=10.故選:A2、D【解析】試題解析:故選D.3、C【分析】畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準(zhǔn)確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關(guān)鍵.4、B【解析】試題分析:∵由二次函數(shù)的圖象知,a<1,>1,∴b>1.∴由b>1知,反比例函數(shù)的圖象在一、三象限,排除C、D;由知a<1,一次函數(shù)的圖象與y國軸的交點在x軸下方,排除A.故選B.5、D【分析】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.根據(jù)此,分別進(jìn)行判斷即可.【詳解】解:由題意得∠DAE=∠CAB,A、當(dāng)∠AED=∠B時,△ABC∽△AED,故本選項不符合題意;B、當(dāng)∠ADE=∠C時,△ABC∽△AED,故本選項不符合題意;C、當(dāng)=時,△ABC∽△AED,故本選項不符合題意;D、當(dāng)=時,不能推斷△ABC∽△AED,故本選項符合題意;故選D.【點睛】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.6、B【解析】由旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì)可得∠FOC=40°,AO=OD=OC=OF,∠AOC=90°,再根據(jù)等腰三角形的性質(zhì)可求∠OFA的度數(shù).【詳解】∵正方形OABC繞著點O逆時針旋轉(zhuǎn)40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OFA=25°故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),等腰三角形的性質(zhì),熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)解決問題是本題的關(guān)鍵.7、C【分析】A.將拋物線一般式化為頂點式即可得出頂點坐標(biāo),由此可判斷A選項是否正確;B.根據(jù)二次函數(shù)的對稱軸公式即可得出對稱軸,由此可判斷B選項是否正確;C.由函數(shù)的開口方向和頂點坐標(biāo)即可得出當(dāng)時函數(shù)的增減性,由此可判斷C選項是否正確;D.根據(jù)二次項系數(shù)a可判斷開口方向,由此可判斷D選項是否正確.【詳解】,∴該拋物線的頂點坐標(biāo)是,故選項A正確,對稱軸是直線,故選項B正確,當(dāng)時,隨的增大而增大,故選項C錯誤,,拋物線的開口向上,故選項D正確,故選:C.【點睛】本題考查二次函數(shù)的性質(zhì).對于二次函數(shù)y=ax2+bx+c(a≠0),若a>0,當(dāng)x≤時,y隨x的增大而減?。划?dāng)x≥時,y隨x的增大而增大.若a<0,當(dāng)x≤時,y隨x的增大而增大;當(dāng)x≥時,y隨x的增大而減?。诒绢}中能將二次函數(shù)一般式化為頂點式(或會用頂點坐標(biāo)公式計算)得出頂點坐標(biāo)是解決此題的關(guān)鍵.8、A【分析】根據(jù)已知條件可得出,,再結(jié)合三角形的內(nèi)角和定理可得出,從而可判定兩三角形一定相似.【詳解】解:由已知條件可得,,∵,∴,∵,∴,繼而可得出,∴.故選:A.【點睛】本題考查的知識點是相似三角形的判定定理,靈活利用三角形內(nèi)角和定理以及余角定理是解此題的關(guān)鍵.9、C【詳解】根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當(dāng)x=1時,y<0,即a+b+c<0,則②錯誤;根據(jù)對稱軸可得:-=-,則b=3a,根據(jù)a<0,b<0可得:a>b;則③正確;根據(jù)函數(shù)與x軸有兩個交點可得:-4ac>0,則④正確.故選C.【點睛】本題考查二次函數(shù)的性質(zhì).能通過圖象分析a,b,c的正負(fù),以及通過一些特殊點的位置得出a,b,c之間的關(guān)系是解題關(guān)鍵.10、D【分析】連接OC、OD,利用同底等高的三角形面積相等可知陰影部分的面積等于扇形OCD的面積,然后計算扇形面積就可.【詳解】連接OC、OD.∵點C,D為半圓的三等分點,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等邊三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴陰影部分的面積=S扇形CODπr1.故選D.【點睛】本題考查了扇形面積求法,利用已知得出理解陰影部分的面積等于扇形OCD的面積是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、y2>y1>y1【分析】根據(jù)反比例函數(shù)的圖象和性質(zhì),即可得到答案.【詳解】∵反比例函數(shù)的比例系數(shù)k<0,∴在每一個象限內(nèi),y隨x的增大而增大,∵點A(﹣4,y1)、B(﹣2,y2)、C(2,y1)都在反比例函數(shù)的圖象上,∴y2>y1>0,y1<0,∴y2>y1>y1.故答案是:y2>y1>y1.【點睛】本題主要考查反比例函數(shù)的圖象和性質(zhì),掌握反比例函數(shù)的增減性,是解題的關(guān)鍵.12、【分析】先求出瓷磚的總數(shù),再求出白色瓷磚的個數(shù),利用概率公式即可得出結(jié)論.【詳解】由圖可知,共有5塊瓷磚,白色的有3塊,所以它停在白色地磚上的概率=.考點:概率.13、(1,)或(-1,-)【分析】位似變換中對應(yīng)點的坐標(biāo)的變化規(guī)律:在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或?k.本題中k=1或?1.【詳解】解:∵兩個圖形的位似比是1:(?)或1:,AC的中點是(4,3),∴對應(yīng)點是(1,)或(?1,?).【點睛】本題主要考查位似變換中對應(yīng)點的坐標(biāo)的變化規(guī)律.14、【分析】根據(jù)題意列舉出所有4種等可能的結(jié)果數(shù),再根據(jù)題意得出能夠構(gòu)成三角形的結(jié)果數(shù),最后根據(jù)概率公式即可求解.【詳解】從中任取3根共有4種等可能的結(jié)果數(shù),它們?yōu)?、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一個三角形為4、6、8,所以恰好能搭成一個三角形的概率=.故答案為.【點睛】本題考查列表法或樹狀圖法和三角形三邊關(guān)系,解題的關(guān)鍵是通過列表法或樹狀圖法展示出所有等可能的結(jié)果數(shù)及求出構(gòu)成三角形的結(jié)果數(shù).15、【分析】由小明制作了十張卡片,上面分別標(biāo)有這是個數(shù)字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【詳解】解:小明制作了十張卡片,上面分別標(biāo)有這是個數(shù)字.其中能被4整除的有4,8;從這十張卡片中隨機(jī)抽取一張恰好能被4整除的概率是:.故答案為:.【點睛】此題考查了概率公式的應(yīng)用.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.16、2【分析】首先根據(jù)平均數(shù)確定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],計算方差即可.【詳解】∵組數(shù)據(jù)的平均數(shù)是10,∴(9+10+12+x+1)=10,解得:x=11,∴S2=[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(1﹣10)2],=×(1+0+4+1+4),=2.故答案為:2.【點睛】本題考查了方差,一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.17、1【分析】由Rt△APB中AB=2OP知要使AB取得最小值,則PO需取得最小值,連接OM,交⊙M于點P′,當(dāng)點P位于P′位置時,OP′取得最小值,據(jù)此求解可得.【詳解】解:連接OP,

∵PA⊥PB,

∴∠APB=90°,

∵AO=BO,

∴AB=2PO,

若要使AB取得最小值,則PO需取得最小值,

連接OM,交⊙M于點P′,當(dāng)點P位于P′位置時,OP′取得最小值,

過點M作MQ⊥x軸于點Q,

則OQ=6、MQ=8,

∴OM=10,

又∵M(jìn)P′=4,

∴OP′=6,

∴AB=2OP′=1,

故答案為:1.【點睛】本題主要考查點與圓的位置關(guān)系,解題的關(guān)鍵是根據(jù)直角三角形斜邊上的中線等于斜邊的一半得出AB取得最小值時點P的位置.18、3π【分析】由切線及平行的性質(zhì)可知,利用扇形所對的圓心角度數(shù)可得陰影部分面積所占的白分比,再用圓的面積乘以百分比即可.【詳解】解:AB是⊙O的切線,A.為切點即陰影部分的面積故答案為:.【點睛】本題考查了切線的性質(zhì)及扇形的面積,熟練掌握圓的切線垂直于過切點的半徑這一性質(zhì)是解題的關(guān)鍵.三、解答題(共66分)19、【分析】利用因式分解法求解即可.【詳解】因式分解,得于是得或故原方程的解為:.【點睛】本題考查了一元二次方程的解法,其主要解法包括:直接開方法、配方法、公式法、因式分解法(十字相乘法)等,熟記各解法是解題關(guān)鍵.20、(2)k=-2;(2)作圖見解析;2.【分析】(2)把這兩個函數(shù)解析式聯(lián)立,化簡可得kx2+4x-4=0,又因y=的圖像與直線y=kx+4只有一個公共點,可得△=0,即可求得k值;(2)C2平移至C2處所掃過的面積等于平行四邊形C2C2AB的面積,直接求得即可.【詳解】Jie:(2)聯(lián)立得kx2+4x-4=0,又∵y=的圖像與直線y=kx+4只有一個公共點,∴42-4?k?(—4)=0,∴k=-2.(2)如圖:C2平移至C2處所掃過的面積為2.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題;平移的性質(zhì).21、(1)新傳送帶AC的長度為8米;(2)距離B點5米的貨物不需要挪走,理由見解析【分析】(1)根據(jù)正弦的定義求出AD,根據(jù)直角三角形30度角的性質(zhì)求出AC;

(2)根據(jù)正切函數(shù)的定義求出CD,求出PC的長度,比較大小得到答案.【詳解】(1)在Rt△ABD中,∠ADB=90,,sin∠ABD=,∴,在Rt△ACD中,∠ADC=90°,∠ACD=30°,

∴AC=2AD=8,

答:新傳送帶AC的長度為8米;(2)距離B點5米的貨物不需要挪走,

理由如下:在Rt△ABD中,∠ADB=90,∠ABD=45°,

∴BD=AD=4,在Rt△ACD中,∠ADC=90,∠ACD=30°,AC=8,∴(米),∴CB=CD-BD≈2.8,

PC=PB-CB≈2.2,

∵2.2>2,

∴距離B點5米的貨物不需要挪走.【點睛】本題實際考查的是解直角三角形的應(yīng)用,在兩個直角三角形擁有公共邊的情況下,先求出這條公共邊是解答此類題目的關(guān)鍵.22、(1);(2).【分析】(1)先求出點F坐標(biāo),利用待定系數(shù)法求出反比例函數(shù)的表達(dá)式;(2)利用點F的的橫坐標(biāo)為4,點的縱坐標(biāo)為3,分別求得用k表示的BF、AE長,繼而求得CF、CE長,從而求得結(jié)論.【詳解】(1)是的中點,,點的坐標(biāo)為,將點的坐標(biāo)為代入得:∴,∴反比例函數(shù)的表達(dá)式;(2)點的橫坐標(biāo)為4,代入,,,,點的縱坐標(biāo)為3,代入,,即,,,所以.【點睛】此題是反比例函數(shù)與幾何的綜合題,主要考查了待定系數(shù)法,矩形的性質(zhì),銳角三角函數(shù),掌握反比例函數(shù)的性質(zhì)是解本題的關(guān)鍵.23、(1);(2);(3)【分析】(1)由BC是直徑證得∠OCD=∠BDO,從而得到△BOD∽△DOC,根據(jù)線段成比例求出OD的長,設(shè)拋物線解析式為y=a(x+2)(x-8),將點D坐標(biāo)代入即可得到解析式;(2)利用角平分線求出,得到,從而得出點F的坐標(biāo)(3,5),再延長延長CD至點,可使,得到(-8,8),求出F的解析式,與直線BD的交點坐標(biāo)即為點P,此時△PFC的周長最??;(3)先假設(shè)存在,①利用弧等圓周角相等把點D、F繞點A順時針旋轉(zhuǎn)90,使點F與點B重合,點G與點Q重合,則Q1(7,3),符合,求出直線FQ1的解析式,與拋物線的交點即為點G1,②根據(jù)對稱性得到點Q2的坐標(biāo),再求出直線FQ2的解析式,與拋物線的交點即為點G2,由此證得存在點G.【詳解】(1)∵以線段BC為直徑作⊙A,交y軸的正半軸于點D,∴∠BDO+∠ODC=90,∵∠OCD+∠ODC=90,∴∠OCD=∠BDO,∵∠DOC=∠DOB=90,∴△BOD∽△DOC,∴,∵B(-2,0),C(8,0),∴,解得OD=4(負(fù)值舍去),∴D(0,4)設(shè)拋物線解析式為y=a(x+2)(x-8),∴4=a(0+2)(0-8),解得a=,∴二次函數(shù)的解析式為y=(x+2)(x-8),即.(2)∵BC為⊙A的直徑,且B(-2,0),C(8,0),∴OA=3,A(3,0),∴點E是BD延長線上一點,∠CDE的角平分線DF交⊙A于點F,∴,連接AF,則,∵OA=3,AF=5∴F(3,5)∵∠CDB=90,∴延長CD至點,可使,∴(-8,8),連接F叫BE于點P,再連接PF、PC,此時△PFC的周長最短,解得F的解析式為,BD的解析式為y=2x+4,可得交點P.(3)存在;假設(shè)存在點G,使∠GFC=∠DCF,設(shè)射線GF交⊙A于點Q,①∵A(3,0),F(3,5),C(8,0),D(0,4),∴把點D、F繞點A順時針旋轉(zhuǎn)90,使點F與點B重合,點G與點Q重合,則Q1(7,3),符合,∵F(3,5),Q1(7,3),∴直線FQ1的解析式為,解,得,(舍去),∴G1;②Q1關(guān)于x軸對稱點Q2(7,-3),符合,∵F(3,5),Q2(7,3),∴直線FQ2的解析式為y=-2x+11,解,得,(舍去),∴G2綜上,存在點G或,使得∠GFC=∠DCF.【點睛】此題是二次函數(shù)的綜合題,(1)考查待定系數(shù)法求函數(shù)解析式,需要先證明三角形相似,由此求得線段OD的長,才能求出解析式;(2)考查最短路徑問題,此問的關(guān)鍵是求出點F的坐標(biāo),由此延長CD至點,使,得到點的坐標(biāo)從而求得交點P的坐標(biāo);③是難點,根據(jù)等弧所對的圓心角相等將弧DF旋轉(zhuǎn),求出與圓的交點Q1坐標(biāo),從而求出直線與拋物線的交點坐標(biāo)即點G的坐標(biāo);再根據(jù)對稱性求得點Q2的坐標(biāo),再求出直線與拋物線的交點G的坐標(biāo).24、(1)60°;(2)3【分析】(1)根據(jù)圓周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后利用互余可計算出∠BAD的度數(shù);(2)利用含30度的直角三角形三邊的關(guān)系求解.【詳解】解:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.25、(1)①2;②;(2)或;(3)點E運(yùn)動形成的圖形與正方形PQMN的“近距離”為.【分析】(1)①由垂線段最短,即可得到答案;②根據(jù)題意,找出正方形PQMN與△ABC的邊界的“近距離”為1,的臨界點,然后分別求出m的最小值和最大值,即可得到m的取值范圍;(2)根據(jù)題意,拋物線與△ABC的“近距離”為1時,可分為兩種情況:當(dāng)點C到拋物線的距離為1,即CD=1;當(dāng)拋物線與線段AB的距離為1時,即GH=1;分別求出a的值,即可得到答案;(3)根據(jù)題意,取AB的中點F,連接EF,求出EF的長度,然后根據(jù)題意,求出點F,點Q的坐標(biāo),求出FQ的長度,即可得到EQ的長度,即可得到答案.【詳解】解:(1)①∵B(9,2),C(,2),∴點B、C的縱坐標(biāo)相同,∴線段BC∥x軸,∴原點O到線段BC的最短距離為2;即原點O與線段BC的“近距離”為2;故答案為:2;②∵A(-1,-8),B(9,2),C(-1,2),∴線段BC∥x軸,線段AC∥y軸,∴AC=BC=10,△ABC是等腰直角三角形,當(dāng)點N與點O重合時,點N與線段AC的最短距離為1,則正方形PQMN與△ABC的邊界的“近距離”為1,此時m為最小值,∵正方形的邊長為,由勾股定理,得:,∴,(舍去);當(dāng)點Q到線段AB的距離為1時,此時m為最大值,如圖:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值為:,∴m的取值范圍為:;故答案為:;(2)拋物線C:,且,若拋物線C與△ABC的“近距離”為1,由題可知,點C與拋物線的距離為1時,如圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論