




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.“鳳鳴”文學社在學校舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設該組共有x名同學,那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2102.如圖,在正方形網(wǎng)格中,已知的三個頂點均在格點上,則()A.2 B. C. D.3.如圖,在平行四邊形中,點是上任意一點,過點作交于點,連接并延長交的延長線于點,則下列結(jié)論中錯誤的是()A. B. C. D.4.對于二次函數(shù)的圖象,下列說法正確的是()A.開口向下 B.對稱軸 C.頂點坐標是 D.與軸有兩個交點5.老師設計了接力游戲,用合作的方式完成“求拋物線的頂點坐標”,規(guī)則如下:每人只能看到前一人給的式子,并進行一步計算,再將結(jié)果傳遞給下一人,最后完成解答.過程如圖所示:接力中,自己負責的一步出現(xiàn)錯誤的是()A.只有丁 B.乙和丁 C.乙和丙 D.甲和丁6.將拋物線y=(x﹣2)2﹣8向左平移3個單位,再向上平移5個單位,得到拋物線的表達式為()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣37.如圖,二次函數(shù)y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,1)與(0,3)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y1)是函數(shù)圖象上的兩點,則y1<y1;④﹣<a<﹣.其中正確結(jié)論有()A.1個 B.1個 C.3個 D.4個8.在平面直角坐標系中,將橫縱坐標之積為1的點稱為“好點”,則函數(shù)的圖象上的“好點”共有()A.1個 B.2個 C.3個 D.4個9.如圖,在四邊形ABCD中,對角線AC與BD相交于點O,AC平分∠DAB,且∠DAC=∠DBC,那么下列結(jié)論不一定正確的是()A.△AOD∽△BOC B.△AOB∽△DOCC.CD=BC D.BC?CD=AC?OA10.在70周年國慶閱兵式上有兩輛閱兵車的車牌號如圖所示(每輛閱兵車的車牌號含7位數(shù)字或字母),則“9”這個數(shù)字在這兩輛車牌號中出現(xiàn)的概率為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,D在矩形ABCD中,AB=4,BC=6,E是邊AD一個動點,將△ABE沿BE對折成△BEF,則線段DF長的最小值為_____.12.一件商品的標價為108元,經(jīng)過兩次降價后的銷售價是72元,求平均每次降價的百分率.若設平均每次降價的百分率為x,則可列方程_________.13.若反比例函數(shù)的圖象在每一象限內(nèi),y隨x的增大而增大,請寫出滿足條件的一個反比例函數(shù)的解折式___________.14.已知是方程的根,則代數(shù)式的值為__________.15.已知⊙O的直徑為10cm,線段OP=5cm,則點P與⊙O的位置關系是__.16.如圖,在矩形ABCD中,AB=6,BC=4,M是AD的中點,N是AB邊上的動點,將△AMN沿MN所在直線折疊,得到△,連接,則的最小值是________17.已知分別切于點,為上不同于的一點,,則的度數(shù)是_______.18.如圖,點D,E分別在AB、AC上,且∠ABC=∠AED.若DE=2,AE=3,BC=6,則AB的長為_____.三、解答題(共66分)19.(10分)如圖,點D是∠AOB的平分線OC上任意一點,過D作DE⊥OB于E,以DE為半徑作⊙D,①判斷⊙D與OA的位置關系,并證明你的結(jié)論.②通過上述證明,你還能得出哪些等量關系?20.(6分)如圖,拋物線C1:y=x2﹣2x與拋物線C2:y=ax2+bx開口大小相同、方向相反,它們相交于O,C兩點,且分別與x軸的正半軸交于點B,點A,OA=2OB.(1)求拋物線C2的解析式;(2)在拋物線C2的對稱軸上是否存在點P,使PA+PC的值最小?若存在,求出點P的坐標,若不存在,說明理由;(3)M是直線OC上方拋物線C2上的一個動點,連接MO,MC,M運動到什么位置時,△MOC面積最大?并求出最大面積.21.(6分)某班為推薦選手參加學校舉辦的“祖國在我心中”演講比賽活動,先在班級中進行預賽,班主任根據(jù)學生的成績從高到低劃分為A,B,C,D四個等級,并繪制了不完整的兩種統(tǒng)計圖表.請根據(jù)圖中提供的信息,回答下列問題:(1)a的值為;(2)求C等級對應扇形的圓心角的度數(shù);(3)獲得A等級的4名學生中恰好有1男3女,該班將從中隨機選取2人,參加學校舉辦的演講比賽,請利用列表法或畫樹狀圖法,求恰好選中一男一女參加比賽的概率.22.(8分)如圖,在中,,,于點,是上的點,于點,,交于點.(1)求證:;(2)當?shù)拿娣e最大時,求的長.23.(8分)如圖,在矩形ABCD中,AB=6,AD=3,點E是邊CD的中點,點P,Q分別是射線DC與射線EB上的動點,連結(jié)PQ,AP,BP,設DP=t,EQ=2t.(1)當點P在線段DE上(不包括端點)時.①求證:AP=PQ;②當AP平分∠DPB時,求△PBQ的面積.(2)在點P,Q的運動過程中,是否存在這樣的t,使得△PBQ為等腰三角形?若存在,請求出t的值;若不存在,試說明理由.24.(8分)如圖,已知直線AB經(jīng)過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.(1)求這條直線的函數(shù)關系式及點B的坐標.(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?25.(10分)為了測量山坡上的電線桿的高度,數(shù)學興趣小組帶上測角器和皮尺來到山腳下,他們在處測得信號塔頂端的仰角是,信號塔底端點的仰角為,沿水平地面向前走100米到處,測得信號塔頂端的仰角是,求信號塔的高度.(結(jié)果保留整數(shù))26.(10分)如圖,在平面直角坐標系中,點從點運動到點停止,連接,以長為直徑作.(1)若,求的半徑;(2)當與相切時,求的面積;(3)連接,在整個運動過程中,的面積是否為定值,如果是,請直接寫出面積的定值,如果不是,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、B【詳解】設全組共有x名同學,那么每名同學送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.2、B【分析】過C點作CD⊥AB,交AB的延長線于D點,則CD=1,AC=,在直角三角形ACD中即可求得的值.【詳解】過C點作CD⊥AB,交AB的延長線于D點,則CD=1,AC=在直角三角形ACD中故選:B【點睛】本題考查的是網(wǎng)格中的銳角三角函數(shù),關鍵是創(chuàng)造直角三角形,盡可能的把直角三角形的頂點放在格點.3、C【分析】根據(jù)平行四邊形的性質(zhì)可得出AD=EF=BC、AE=DF、BE=CF,然后根據(jù)相似三角形的對應邊成比例一一判斷即可.【詳解】∵四邊形ABCD為平行四邊形,EF∥BC,∴AD=EF=BC,AE=DF,BE=CF.A.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故結(jié)論A正確;B.∵AD∥CK,∴△ADF∽△KCF,∴,∴,故結(jié)論B正確;C.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故結(jié)論C錯誤;D.∵ABCD是平行四邊形,∴∠B=∠D.∵AD∥BK,∴∠DAF=∠K,∴△ADF∽△KBA,∴,即,故結(jié)論D正確.故選:C.【點睛】本題考查了相似三角形的判定與性以及平行四邊形的性質(zhì),根據(jù)相似三角形的性質(zhì)逐一分析四個結(jié)論的正誤是解題的關鍵.4、C【分析】根據(jù)拋物線的性質(zhì)由a=2得到圖象開口向上,再根據(jù)頂點式得到頂點坐標,再根據(jù)對稱軸為直線x=1和開口方向和頂點,從而可判斷拋物線與x軸的公共點個數(shù).【詳解】解:二次函數(shù)y=2(x-1)2+2的圖象開口向上,頂點坐標為(1,2),對稱軸為直線x=1,拋物線與x軸沒有公共點.
故選:C.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x-h)2+k中,其頂點坐標為(h,k),對稱軸為x=h.當a>0時,拋物線開口向上,當a<0時,拋物線開口向下.5、D【分析】觀察每一項的變化,發(fā)現(xiàn)甲將老師給的式子中等式右邊縮小兩倍,到了丁處根據(jù)丙的式子得出了錯誤的頂點坐標.【詳解】解:,可得頂點坐標為(-1,-6),根據(jù)題中過程可知從甲開始出錯,按照此步驟下去到了丁處可得頂點應為(1,-3),所以錯誤的只有甲和丁.故選D.【點睛】本題考查了求二次函數(shù)的頂點坐標和配方法,解題的關鍵是掌握配方法化頂點式的方法.6、D【分析】根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】解:由“左加右減”的原則可知,將拋物線y=(x-2)2-8向左平移1個單位所得直線的解析式為:y=(x+1)2-8;
由“上加下減”的原則可知,將拋物線y=(x-5)2-8向上平移5個單位所得拋物線的解析式為:y=(x+1)2-1.
故選:D.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關鍵.7、D【分析】根據(jù)二次函數(shù)的圖象與系數(shù)的關系即可求出答案.【詳解】①由開口可知:a<0,∴對稱軸x=?>0,∴b>0,由拋物線與y軸的交點可知:c>0,∴abc<0,故①正確;②∵拋物線與x軸交于點A(-1,0),對稱軸為x=1,∴拋物線與x軸的另外一個交點為(5,0),∴x=3時,y>0,∴9a+3b+c>0,故②正確;③由于<1<,且(,y1)關于直線x=1的對稱點的坐標為(,y1),∵<,∴y1<y1,故③正確,④∵?=1,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵1<c<3,∴1<-5a<3,∴-<a<-,故④正確故選D.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),解題的關鍵是熟練運用圖象與系數(shù)的關系,本題屬于中等題型.8、C【分析】分x≥0及x<0兩種情況,利用“好點”的定義可得出關于x的一元二次方程,解之即可得出結(jié)論.【詳解】當x≥0時,,即:,
解得:,(不合題意,舍去),當x<0時,,即:,
解得:,,∴函數(shù)的圖象上的“好點”共有3個.
故選:C.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征及解一元二次方程,分x≥0及x<0兩種情況,找出關于x的一元二次方程是解題的關鍵.9、D【分析】直接利用相似三角形的判定方法分別分析得出答案.【詳解】解:∵∠DAC=∠DBC,∠AOD=∠BOC,∴∽,故A不符合題意;∵∽,∴AO:OD=OB:OC,∵∠AOB=∠DOC,∴∽,故B不符合題意;∵∽,∴∠CDB=∠CAB,∵∠CAD=∠CAB,∠DAC=∠DBC,∴∠CDB=∠DBC,∴CD=BC;沒有條件可以證明,故選D.【點睛】本題考查了相似三角形的判定與性質(zhì),解題關鍵在于熟練掌握相似三角形的判定方法①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.10、B【分析】兩輛閱兵車的車牌號共含14位數(shù)字或字母,其中數(shù)字9出現(xiàn)了3次,根據(jù)概率公式即可求解.【詳解】解:兩輛閱兵車的車牌號共含14位數(shù)字或字母,其中數(shù)字9出現(xiàn)了3次,所以“9”這個數(shù)字在這兩輛車牌號中出現(xiàn)的概率為.故選:B.【點睛】本題考查了概率的計算,掌握概率計算公式是解題關鍵.二、填空題(每小題3分,共24分)11、【分析】連接DF、BD,根據(jù)DF>BD?BF可知當點F落在BD上時,DF取得最小值,且最小值為BD?BF的長,然后根據(jù)矩形的折疊性質(zhì)進一步求解即可.【詳解】如圖,連接DF、BD,由圖可知,DF>BD?BF,當點F落在BD上時,DF取得最小值,且最小值為BD?BF的長,∵四邊形ABCD是矩形,∴AB=CD=4、BC=6,∴BD=,由折疊性質(zhì)知AB=BF=4,∴線段DF長度的最小值為BD?BF=,故答案為:.【點睛】本題主要考查了矩形的折疊的性質(zhì),熟練掌握相關概念是解題關鍵.12、【分析】設平均每次降價的百分率為x,根據(jù)“一件商品的標價為108元,經(jīng)過兩次降價后的銷售價是72元”即可列出方程.【詳解】解:設平均每次降價的百分率為x,根據(jù)題意可得:,故答案為:.【點睛】本題考查一元二次方程的實際應用,理解題意,找出等量關系是解題的關鍵.13、【分析】根據(jù)反比例函數(shù)的性質(zhì):當k>0時函數(shù)圖像的每一支上,y隨x的增大而減少;當k<0時,函數(shù)圖像的每一支上,y隨x的增大而增大,因此符合條件的反比例函數(shù)滿足k<0即可.【詳解】因為反比例函數(shù)的圖象在每一象限內(nèi),y隨x的增大而增大,所以k<0故答案為:【點睛】本題考查的是反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的增減性是關鍵.14、1【分析】把代入已知方程,并求得,然后將其整體代入所求的代數(shù)式進行求值即可.【詳解】解:把代入,得,解得,所以.故答案是:1.【點睛】本題考查一元二次方程的解以及代數(shù)式求值,注意解題時運用整體代入思想.15、點P在⊙O上【分析】知道圓O的直徑為10cm,OP的長,得到OP的長與半徑的關系,求出點P與圓的位置關系.【詳解】因為圓O的直徑為10cm,所以圓O的半徑為5cm,又知OP=5cm,所以OP等于圓的半徑,所以點P在⊙O上.故答案為點P在⊙O上.【點睛】本題考查了點與圓的位置關系,根據(jù)OP的長和圓O的直徑,可知OP的長與圓的半徑相等,可以確定點P的位置.16、【分析】由折疊的性質(zhì)可得AM=A′M=2,可得點A′在以點M為圓心,AM為半徑的圓上,當點A′在線段MC上時,A′C有最小值,由勾股定理可求MC的長,即可求A′C的最小值.【詳解】∵四邊形ABCD是矩形,∴AB=CD=6,BC=AD=4,∵M是AD邊的中點,∴AM=MD=2,∵將△AMN沿MN所在直線折疊,∴AM=A′M=2,∴點A′在以點M為圓心,AM為半徑的圓上,∴如圖,當點A′在線段MC上時,A′C有最小值,∵MC===2,∴A′C的最小值=MC?MA′=2?2,故答案為:2?2.【點睛】本題主要考查了翻折變換,矩形的性質(zhì)、勾股定理,解題的關鍵是分析出A′點運動的軌跡.17、或【分析】連接OA、OB,先確定∠AOB,再分就點C在上和上分別求解即可.【詳解】解:如圖,連接OA、OB,∵PA、PB分別切于A、B兩點,∴∠PAO=∠PBO=90°∴∠AOB=360°-90°-90°-80°=100°,當點C1在上時,則∠AC1B=∠AOB=50°當點C2在B上時,則∠AC2B+∠AC1B=180°,即.∠AC2B=130°.故答案為或.【點睛】本題主要考查了圓的切線性質(zhì)和圓周角定理,根據(jù)已知條件確定∠AOB和分類討論思想是解答本題的關鍵.18、1【分析】由角角相等證明△ABC∽△AED,其性質(zhì)求得AB的長為1.【詳解】如圖所示:∵∠ABC=∠AED,∠A=∠A,∴△ABC∽△AED,∴,∴AB=,又∵DE=2,AE=3,BC=6,∴AB==1,故答案為1.【點睛】本題主要考查了相似三角形的判定與性質(zhì)綜合,屬于基礎題型.三、解答題(共66分)19、(1)⊙D與OA的位置關系是相切,證明詳見解析;(2)∠DOA=∠DOE,OE=OF.【分析】①首先過點D作DF⊥OA于F,由點D是∠AOB的平分線OC上任意一點,DE⊥OB,根據(jù)角平分線的性質(zhì),即可得DF=DE,則可得D到直線OA的距離等于⊙D的半徑DE,則可證得⊙D與OA相切.
②根據(jù)切線的性質(zhì)解答即可.【詳解】解:①⊙D與OA的位置關系是相切,
證明:過D作DF⊥OA于F,
∵點D是∠AOB的平分線OC上任意一點,DE⊥OB,
∴DF=DE,
即D到直線OA的距離等于⊙D的半徑DE,
∴⊙D與OA相切.
②∠DOA=∠DOE,OE=OF.20、(1)y=﹣x2+4x;(2)P(2,2);(3)S△MOC最大值為.【分析】(1)C1、C2:y=ax2+bx開口大小相同、方向相反,則a=-1,將點A的坐標代入C2的表達式,即可求解;
(2)點A關于C2對稱軸的對稱點是點O(0,0),連接OC交函數(shù)C2的對稱軸與點P,此時PA+PC的值最小,即可求解;
(3)S△MOC=MH×xC=(-x2+4x-x)=-x2+x,即可求解.【詳解】(1)令:y=x2﹣2x=0,則x=0或2,即點B(2,0),∵C1、C2:y=ax2+bx開口大小相同、方向相反,則a=﹣1,則點A(4,0),將點A的坐標代入C2的表達式得:0=﹣16+4b,解得:b=4,故拋物線C2的解析式為:y=﹣x2+4x;(2)聯(lián)立C1、C2表達式并解得:x=0或3,故點C(3,3),連接OC交函數(shù)C2的對稱軸與點P,此時PA+PC的值最小為:線OC的長度;設OC所在直線方程為:將點O(0,0),C(3,3)帶入方程,解得k=1,所以OC所在直線方程為:點P在函數(shù)C2的對稱軸上,令x=2,帶入直線方程得y=2,點P坐標為(2,2)(3)由(2)知OC所在直線的表達式為:y=x,過點M作y軸的平行線交OC于點H,設點M(x,﹣x2+4x),則點H(x,x),則MH=﹣x2+4x﹣x則S△MOC=S△MOH+S△MCH=MH×xC=(﹣x2+4x﹣x)=∵△MOC的面積是一個關于x的二次函數(shù),且開口向下其頂點就是它的最大值。其對稱軸為x==,此時y=S△MOC最大值為.【點睛】本題考查了待定系數(shù)法求解析式,還考查了三角形的面積,要注意將三角形分解成兩個三角形求解;還要注意求最大值可以借助于二次函數(shù).21、(1)8;(2);(3)【分析】(1)根據(jù)D等級的人數(shù)除以其百分比得到班級總?cè)藬?shù),再乘以B等級的百分比即可得a的值;(2)用C等級的人數(shù)除以班級總?cè)藬?shù)即可得到其百分比,用360°乘以其百分比得到其扇形圓心角度數(shù);(3)畫樹狀圖可知,共有12種均等可能結(jié)果,恰好選中一男一女的有6種.然后根據(jù)概率公式求解即可【詳解】解:(1)班級總?cè)藬?shù)為人,B等級的人數(shù)為人,故a的值為8;(2)∴C等級對應扇形的圓心角的度數(shù)為.(3)畫樹狀圖如圖:(畫圖正確)由樹狀圖可知,共有12種均等可能結(jié)果,恰好選中一男一女的有6種.∴P(一男一女)答:恰好選中一男一女參加比賽的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A的結(jié)果數(shù)目m,然后利用概率公式計算事件A的概率為.也考查了統(tǒng)計圖.22、(1)見解析;(2)5【分析】(1)根據(jù)相似三角形的判定方法即可求;(2)設,的面積為,由等腰三角形性質(zhì)和平行線分線段成比例,可求出,再根據(jù)的面積可以得出關于的函數(shù)關系式,由二次函數(shù)性質(zhì)可得的面積為最大時的值即可.【詳解】解:(1)證明:,,,,.(2)解:設,則,∵,,,∴,在Rt△ABG中,,∵∴,即,∴,,,即,的面積當?shù)拿娣e最大時,,即的長為.【點睛】本題考查相似三角形的判定和性質(zhì),三角形的面積公式,可利用數(shù)形結(jié)合思想根據(jù)題目提供的條件轉(zhuǎn)化為函數(shù)關系式.23、(1)①見解析;②S△PBQ=18﹣93;(2)存在,滿足條件的t的值為6﹣13或13或6+13.【解析】(1)①如圖1中,過點Q作QF⊥CD于點F,證明Rt△ADP≌Rt△PFQ即可.②如圖,過點A作PB的垂線,垂足為H,過點Q作PB的垂線,垂足為G.由Rt△ADP≌Rt△AHP,推出PH=PD=t,AH=AD=1.由Rt△AHP△Rt△PGQ,推出QG=PH=DP=t,在Rt△AHB中,則有12+(6﹣t)2=62,求出t即可解決問題.(2)分三種情形:①如圖1﹣1中,若點P在線段DE上,當PQ=QB時.②如圖1﹣2中,若點P在線段EC上(如圖),當PB=BQ時.③如圖1﹣1中,若點P在線段DC延長線上,QP=QB時,分別求解即可.【詳解】(1)①證明:如圖1中,過點Q作QF⊥CD于點F,∵點E是DC的中點,∴CE=DE=1=CB,又∵∠C=90°,∴∠CEB=∠CBE=45°,∵EQ=2t,DP=t,∴EF=FQ=t.∴FQ=DP,∴PF=PE+EF=PE+DP=DE=1∴PF=AD,∴Rt△ADP≌Rt△PFQ,∴AP=PQ.②如圖,過點A作PB的垂線,垂足為H,過點Q作PB的垂線,垂足為G.由AP平分∠DPB,得∠APD=∠APB,易證Rt△ADP≌Rt△AHP,∴PH=PD=t,AH=AD=1.又∠APD=∠PAB,∴∠PAB=∠APB,∴PB=AB=8,易證Rt△AHP△Rt△PGQ,∴QG=PH=DP=t,在Rt△AHB中,則有12+(6﹣t)2=62,解得t=6﹣12,∴S△PBQ=12?PB?QG=12×6×(6﹣12)=18﹣9(1)①如圖1﹣1中,若點P在線段DE上,當PQ=QB時,∴AP=PQ=QB=BE﹣EQ=12﹣2t,在Rt△APD中,由DP2+AD2=AP2,得t2+9=2(1﹣t)2,解得t=6﹣12或6+12(舍去)②如圖1﹣2中,若點P在線段EC上(如圖),當PB=BQ時,∴PB=BQ=2t﹣12,則在Rt△BCP中,由BP2=CP2+BC2,得2(t﹣1)2=(6﹣t)2+9,解得:t=12或-33③如圖1﹣1中,若點P在線段DC延長線上,QP=QB時,∴AP=PQ=BQ=2t﹣12,在Rt△APD中,由DP2+AD2=AP2,得t2+9=2(t﹣1)2,解得t=6-33(舍去)或綜上所述,滿足條件的t的值為6﹣12或12或6+12.【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判走和性質(zhì),勾股定理等知識,解題的關鍵是學會添加常用輔助線,構(gòu)造全等三角形解決間題,屬于中考壓軸題.24、(1)直線y=x+4,點B的坐標為(8,16);(2)點C的坐標為(﹣,0),(0,0),(6,0),(32,0);(3)當M的橫坐標為6時,MN+3PM的長度的最大值是1.【解析】(1)首先求得點A的坐標,然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點坐標;(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標;(3)設M(a,a2),得MN=a2+1,然后根據(jù)點P與點M縱坐標相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標為-2,,A點的坐標為(-2,1),設直線的函數(shù)關系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,
當x=8時,y=16,
∴點B的坐標為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標為(-,0),(0,0),(6,0),(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年計算機考試復習素材試題及答案
- 2024年計算機基礎考試重要考點的試題及答案
- 公共事業(yè)管理學科知識問答試題及答案
- 直擊語文考試的難點試題及答案
- 獨特角度學習古代文學史試題及答案
- 論文學史上的女性形象試題及答案
- 小學六年級語文考場技巧題及答案
- 小自考視覺傳播設計關鍵知識及答案
- 拿下美容師資格證的考試題目及答案
- 教練班鋼管考試題及答案
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設計規(guī)范
- (2024年)橋梁施工質(zhì)量控制要點
- NB-T 47013.15-2021 承壓設備無損檢測 第15部分:相控陣超聲檢測
- 煤制甲醇工藝設計
- 經(jīng)驗萃取技術的實戰(zhàn)性應用課件
- 最新《易栓癥》課件
- 生產(chǎn)經(jīng)理轉(zhuǎn)正述職報告課件
- 空調(diào)清洗施工方案
- 《錢的旅行》課堂 課件
- 《數(shù)據(jù)庫驗收規(guī)定》word版
評論
0/150
提交評論