2022-2023學年江蘇省南京鼓樓區(qū)29中學集團學校數(shù)學九上期末調研試題含解析_第1頁
2022-2023學年江蘇省南京鼓樓區(qū)29中學集團學校數(shù)學九上期末調研試題含解析_第2頁
2022-2023學年江蘇省南京鼓樓區(qū)29中學集團學校數(shù)學九上期末調研試題含解析_第3頁
2022-2023學年江蘇省南京鼓樓區(qū)29中學集團學校數(shù)學九上期末調研試題含解析_第4頁
2022-2023學年江蘇省南京鼓樓區(qū)29中學集團學校數(shù)學九上期末調研試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列對拋物線y=-2(x-1)2+3性質的描寫中,正確的是(

)A.開口向上 B.對稱軸是直線x=1 C.頂點坐標是(-1,3) D.函數(shù)y有最小值2.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在A的下方,點E是邊長為2,中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為A.3 B. C.4 D.3.關于x的一元二次方程x2+bx﹣10=0的一個根為2,則b的值為()A.1 B.2 C.3 D.74.如圖,在中,點分別在邊上,且,則下列結論不一定成立的是()A. B. C. D.5.直徑為1個單位長度的圓上有一點A與數(shù)軸上表示1的點重合,圓沿著數(shù)軸向左滾動一周,點A與數(shù)軸上的點B重合,則B表示的實數(shù)是()A. B. C. D.6.一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是()A.﹣3 B.﹣1 C.2 D.37.去年某果園隨機從甲、乙、丙、丁四個品種的葡萄樹中各采摘了10棵,每棵產(chǎn)量的平均數(shù)(單位:千克)及方差(單位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年準備從四個品種中選出一種產(chǎn)量既高又穩(wěn)定的葡萄樹進行種植,應選的品種是(

)A.甲 B.乙 C.丙 D.丁8.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.89.在平面直角坐標系中,將拋物線y=x2的圖象向左平移3個單位、再向下平移2個單位所得的拋物線的函數(shù)表達式為()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+210.如圖所示為兩把按不同比例尺進行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對齊的,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,則上面直尺的刻度16與下面直尺對應的刻度是()A.19.4 B.19.5 C.19.6 D.19.7二、填空題(每小題3分,共24分)11.若函數(shù)y=(a-1)x2-4x+2a的圖象與x軸有且只有一個交點,則a的值為_____.12.在平面直角坐標系中,點P(3,﹣5)關于原點對稱的點的坐標是_____.13.如果一個四邊形的某個頂點到其他三個頂點的距離相等,我們把這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.如圖,已知梯形ABCD是等距四邊形,AB∥CD,點B是等距點.若BC=10,cosA=,則CD的長等于_____.14.已知反比例函數(shù)y=的圖象經(jīng)過點(3,﹣4),則k=_____.15.拋物線的頂點坐標是__________.16.如圖,矩形ABCD的頂點A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D,交BC于點E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.17.如圖,在△ABC中,E,F(xiàn)分別為AB,AC的中點,則△AEF與△ABC的面積之比為.18.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.三、解答題(共66分)19.(10分)已知關于x的一元二次方程(a﹣1)x2﹣2x+1=0有兩個不相等的實數(shù)根,求a的取值范圍.20.(6分)如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:(1)OA=_____,(2)作出∠AOB的平分線并在其上標出一個點Q,使.21.(6分)已知拋物線y=ax2+2x﹣(a≠0)與y軸交于點A,與x軸的一個交點為B.(1)①請直接寫出點A的坐標;②當拋物線的對稱軸為直線x=﹣4時,請直接寫出a=;(2)若點B為(3,0),當m2+2m+3≤x≤m2+2m+5,且am<0時,拋物線最低點的縱坐標為﹣,求m的值;(3)已知點C(﹣5,﹣3)和點D(5,1),若拋物線與線段CD有兩個不同的交點,求a的取值范圍.22.(8分)如圖,在□ABCD中,AB=5,BC=8.(1)作∠ABC的角平分線交線段AD于點E(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法):(2)在(1)的條件下,求ED的長.23.(8分)解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=1224.(8分)如圖,在正方形ABCD中,AB=4,動點P從點A出發(fā),以每秒2個單位的速度,沿線段AB方向勻速運動,到達點B停止.連接DP交AC于點E,以DP為直徑作⊙O交AC于點F,連接DF、PF.(1)求證:△DPF為等腰直角三角形;(2)若點P的運動時間t秒.①當t為何值時,點E恰好為AC的一個三等分點;②將△EFP沿PF翻折,得到△QFP,當點Q恰好落在BC上時,求t的值.25.(10分)如圖,為了估算河的寬度,我們可以在河對岸選定一點,再在河的這一邊選定點和點,使得,然后選定點,使,確定與的交點,若測得米,米,米,請你求出小河的寬度是多少米?26.(10分)如果是關于x的一元二次方程;(1)求m的值;(2)判斷此一元二次方程的根的情況,如果有實數(shù)根則求出根,如果沒有說明理由則可.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】由拋物線的解析式可求得開口方向、對稱軸及頂點坐標,再逐一進行判斷即可.【詳解】解:A、∵?2<0,∴拋物線的開口向下,故A錯誤,不符合題意;B、拋物線的對稱軸為:x=1,故B正確,符合題意;C、拋物線的頂點為(1,3),故C錯誤,不符合題意;D、因為開口向下,故該函數(shù)有最大值,故D錯誤,不符合題意.故答案為:B.【點睛】本題主要考查二次函數(shù)的性質,掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x?h)2+k中,頂點坐標為(h,k),對稱軸為x=h.2、B【分析】首先分析得到當點E旋轉至y軸正方向上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長.【詳解】如圖,當點E旋轉至y軸正方向上時DE最小.∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC.∵AB=BC=2,∴AD=AB?sin∠B=.∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,1),∴OA=1.∴.故選B.3、C【解析】根據(jù)一元二次方程的解的定義,把x=2代入方程得到關于b的一次方程,然后解一次方程即可.【詳解】解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0解得b=1.故選C.點睛:本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.4、B【分析】根據(jù)相似三角形平行線分線段成比例的性質,分別判定即可.【詳解】∵∴∠A=∠CEF,∠ADE=∠ABC,∠CFE=∠ABC,,∴∠ADE=∠CFE,,C選項正確;∴△ADE∽△EFC∴,A選項正確;又∵∴,D選項正確;∵∴不成立故答案為B.【點睛】此題主要考查相似三角形平行線分線段成比例的運用,熟練掌握,即可解題.5、C【分析】因為圓沿數(shù)軸向左滾動一周的長度是,再根據(jù)數(shù)軸的特點及的值即可解答.【詳解】解:直徑為1個單位長度的圓從原點沿數(shù)軸向左滾動一周,數(shù)軸上表示1的點與點B之間的距離為圓的周長,點B在數(shù)軸上表示1的點的左邊.點B對應的數(shù)是.故選:C.【點睛】本題比較簡單,考查的是數(shù)軸的特點及圓的周長公式.圓的周長公式是:.6、A【分析】根據(jù)一元二次方程根與系數(shù)的關系即可得出答案.【詳解】由根與系數(shù)的關系得故選:A.【點睛】本題主要考查一元二次方程根與系數(shù)的關系,掌握一元二次方程根與系數(shù)的關系是解題的關鍵.7、B【分析】先比較平均數(shù)得到甲組和乙組產(chǎn)量較好,然后比較方差得到乙組的狀態(tài)穩(wěn)定.【詳解】因為甲組、乙組的平均數(shù)丙組比丁組大,而乙組的方差比甲組的小,所以乙組的產(chǎn)量比較穩(wěn)定,所以乙組的產(chǎn)量既高又穩(wěn)定,故選B.【點睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.8、B【分析】根據(jù)垂徑定理求出AD,根據(jù)勾股定理列式求出半徑,根據(jù)三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵9、C【解析】先確定拋物線y=x2的頂點坐標為(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)向左平移3個單位、再向下平移2個單位所得對應點的坐標為-3,-2,然后利用頂點式寫出新拋物線解析式即可.【詳解】拋物線y=x2的頂點坐標為(0,0),把點(0,0)向左平移3個單位、再向下平移2個單位所得對應點的坐標為-3,-2,所以平移后的拋物線解析式為y=(x+3)2-2.故選:C.【點睛】考查二次函數(shù)的平移,掌握二次函數(shù)平移的規(guī)律是解題的關鍵.10、C【分析】根據(jù)兩把直尺在刻度10處是對齊的及上面直尺的刻度11與下面直尺對應的刻度是11.6,得出上面直尺的10個小刻度,對應下面直尺的16個小刻度,進而判斷出上面直尺的刻度16與下面直尺對應的刻度即可.【詳解】解:由于兩把直尺在刻度10處是對齊的,觀察圖可知上面直尺的刻度11與下面直尺對應的刻度是11.6,即上面直尺的10個小刻度,對應下面直尺的16個小刻度,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,因此上面直尺的刻度16與下面直尺對應的刻度是18+1.6=19.6,故答案為C【點睛】本題考查了學生對圖形的觀察能力,通過圖形得出上面直尺的10個小刻度,對應下面直尺的16個小刻度是解題的關鍵.二、填空題(每小題3分,共24分)11、-1或2或1【分析】分該函數(shù)是一次函數(shù)和二次函數(shù)兩種情況求解,若為二次函數(shù),由拋物線與x軸只有一個交點時b2-4ac=0,據(jù)此求解可得.【詳解】∵函數(shù)y=(a-1)x2-4x+2a的圖象與x軸有且只有一個交點,當函數(shù)為二次函數(shù)時,b2-4ac=16-4(a-1)×2a=0,解得:a1=-1,a2=2,當函數(shù)為一次函數(shù)時,a-1=0,解得:a=1.故答案為-1或2或1.12、(﹣3,5)【分析】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反,即可得答案.【詳解】點P(3,﹣5)關于原點對稱的點的坐標是(﹣3,5),故答案為:(﹣3,5).【點睛】本題主要考查平面直角坐標系中,關于原點的兩個點的坐標變化規(guī)律,掌握兩個點關于原點對稱時,它們的坐標符號相反,是解題的關鍵.13、16【解析】如圖作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四邊形BEDF是矩形,理由面積法求出DE,再利用等腰三角形的性質,求出DF即可解決問題.【詳解】連接BD,過點B分別作BM⊥AD于點M,BN⊥DC于點N,∵梯形ABCD是等距四邊形,點B是等距點,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案為16.14、-1.【分析】直接把點(3,﹣4)代入反比例函數(shù)y=,求出k的值即可.【詳解】解:∵反比例函數(shù)y=的圖象經(jīng)過點(3,﹣4),∴﹣4=,解得k=﹣1.故答案為:﹣1.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.15、(-1,-3)【分析】根據(jù)拋物線頂點式得頂點為可得答案.【詳解】解:∵拋物線頂點式得頂點為,∴拋物線的頂點坐標是(-1,-3)故答案為(-1,-3).【點睛】本題考查了二次函數(shù)的頂點式的頂點坐標,熟記二次函數(shù)的頂點式及坐標是解題的關鍵.16、1【解析】由tan∠AOD=,可設AD=1a、OA=4a,在表示出點D、E的坐標,由反比例函數(shù)經(jīng)過點D、E列出關于a的方程,解之求得a的值即可得出答案.【詳解】解:∵tan∠AOD==,∴設AD=1a、OA=4a,則BC=AD=1a,點D坐標為(4a,1a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴點E(4+4a,a),∵反比例函數(shù)經(jīng)過點D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),∴D(2,)則k=2×=1.故答案為1.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征,解題的關鍵是根據(jù)題意表示出點D、E的坐標及反比例函數(shù)圖象上點的橫縱坐標乘積都等于反比例系數(shù)k.17、3:3.【解析】試題解析:∵E、F分別為AB、AC的中點,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴.考點:3.相似三角形的判定與性質;3.三角形中位線定理..18、【解析】過點D作DF⊥BC于點F,由菱形的性質可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質可求k的值.【詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:【點睛】本題考查了反比例函數(shù)圖象點的坐標特征,菱形的性質,勾股定理,求出DE的長度是本題的關鍵.三、解答題(共66分)19、a<2且a≠1【分析】根據(jù)一元二次方程的定義和判別式的意義得到a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,然后解兩個不等式得到它們的公共部分即可.【詳解】∵關于x的一元二次方程(a﹣1)x2﹣2x+1=0有兩個不相等的實數(shù)根,∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,解得:a<2且a≠1.【點睛】本題考查了一元二次方程根的情況與判別式的關系,對于一元二次方程ax2+bx+c=0(a≠0),判別式△=b2-4ac,當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根;注意a≠0這一隱含條件,避免漏解.20、5【解析】(1)依據(jù)勾股定理即可得到OA的長;(2)取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.【詳解】解:(1)由勾股定理,可得AO==5,故答案為5;(2)如圖,取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;如圖,取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【點睛】本題考查作圖﹣復雜作圖、角平分線的性質等知識,解題的關鍵是熟練掌握等腰三角形的性質的應用,角平分線的性質的應用,勾股定理以及相似三角形的性質.21、(1)①;②;(2);(1)a>或a<﹣1.【分析】(1)①令x=0,由拋物線的解析式求出y的值,便可得A點坐標;②根據(jù)拋物線的對稱軸公式列出a的方程,便可求出a的值;(2)把B點坐標代入拋物線的解析式,便可求得a的值,再結合已知條件am<0,得m的取值范圍,再根據(jù)二次函數(shù)的性質結合條件當m2+2m+1≤x≤m2+2m+5時,拋物線最低點的縱坐標為,列出m的方程,求得m的值,進而得出m的準確值;(1)用待定系數(shù)法求出CD的解析式,再求出拋物線的對稱軸,進而分兩種情況:當a>0時,拋物線的頂點在y軸左邊,要使拋物線與線段CD有兩個不同的交點,則C、D兩必須在拋物線上方,頂點在CD下方,根據(jù)這一條件列出a不等式組,進行解答;當a<0時,拋物線的頂點在y軸的右邊,要使拋物線與線段CD有兩個不同的交點,則C、D兩必須在拋物線下方,拋物線的頂點必須在CD上方,據(jù)此列出a的不等式組進行解答.【詳解】(1)①令x=0,得,∴,故答案為:;②∵拋物線的對稱軸為直線x=﹣4,∴,∴a=,故答案為:;(2)∵點B為(1,0),∴9a+6﹣=0,∴a=﹣,∴拋物線的解析式為:,∴對稱軸為x=﹣2,∵am<0,∴m>0,∴m2+2m+1>1>﹣2,∵當m2+2m+1≤x≤m2+2m+5時,y隨x的增大而減小,∵當m2+2m+1≤x≤m2+2m+5,且am<0時,拋物線最低點的縱坐標為﹣,∴,整理得(m2+2m+5)2﹣4(m2+2m+5)﹣12=0,解得,m2+2m+5=6,或m2+2m+5=﹣2(△<0,無解),∴,∵m>0,∴;(1)設直線CD的解析式為y=kx+b(k≠0),∵點C(﹣5,﹣1)和點D(5,1),∴,∴,∴CD的解析式為,∵y=ax2+2x﹣(a≠0)∴對稱軸為,①當a>0時,,則拋物線的頂點在y軸左側,∵拋物線與線段CD有兩個不同的交點,∴,∴;②當a<0時,,則拋物線的頂點在y軸左側,∵拋物線與線段CD有兩個不同的交點,∴,∴a<﹣1,綜上,或a<﹣1.【點睛】本題為二次函數(shù)綜合題,難度較大,解題時需注意用待定系數(shù)法求出CD的解析式,再求出拋物線的對稱軸,要分兩種情況進行討論.22、(1)作圖見解析;(2)3.【分析】(1)以點B為圓心,任意長為半徑畫弧,交AB,BC于兩點,分別以這兩點為圓心,大于這兩點距離的一半為半徑畫弧,在□ABCD內(nèi)交于一點,過點B以及這個交點作射線,交AD于點E即可;(2)利用角平分線的性質以及平行線的性質求出∠ABE=∠AEB,從而得AE=AB,再根據(jù)AB、BC的長即可得出答案.【詳解】解:(1)如圖所示,BE為所求;(2)∵四邊形ABCD是平行四邊形,∴AB//CD,AD=BC=8,∴∠AED=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AE=AB=5,∴DE=AD-AE=3.【點睛】本題考查了角平分線的畫法以及角平分線的性質以及平行線的性質等知識,得出AE=AB是解題關鍵.23、(1)x=7或x=﹣1(2)x=﹣5或x=3【分析】(1)方程兩邊同時加16,根據(jù)完全平方公式求解方程即可.(2)開括號,再移項合并同類項,根據(jù)十字相乘法求解方程即可.【詳解】(1)∵x2﹣6x﹣7=0,∴x2﹣6x+9=16,∴(x﹣3)2=16,∴x﹣3=±4,∴x=7或x=﹣1;(2)原方程化為:x2+2x﹣15=0,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【點睛】本題考查了解一元二次方程的問題,掌握解一元二次方程的方法是解題的關鍵.24、(1)詳見解析;(2)①1;②﹣1.【分析】(1)要證明三角形△DPF為等腰直角三角形,只要證明∠DFP=90°,∠DPF=∠PDF=45°即可,根據(jù)直徑所對的圓周角是90°和同弧所對的圓周角相等,可以證明∠DFP=90°,∠DPF=∠PDF=45°,從而可以證明結論成立;(2)①根據(jù)題意,可知分兩種情況,然后利用分類討論的方法,分別計算出相應的t的值即可,注意點P從A出發(fā)到B停止,t≤4÷2=2;②根據(jù)題意,畫出相應的圖形,然后利用三角形相似,勾股定理,即可求得t的值.【詳解】證明:(1)∵四邊形ABCD是正方形,AC是對角線,∴∠DAC=45°,∵在⊙O中,所對的圓周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直徑,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①當AE:EC=1:2時,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=1;當AE:EC=2:1時,∵AB∥C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論