文化基因算法_第1頁
文化基因算法_第2頁
文化基因算法_第3頁
文化基因算法_第4頁
文化基因算法_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

MemeticAlgorithmMember:楊勇佳、易科、朱家驊、蘇航第1頁Contents1Introduction2ThedevelopmentofMAs2.11stgeneration2.22ndgeneration2.33rdgeneration3

Applications4Example第2頁IntroductiongenememeCommonInthegeneticprocessofcontinuousevolutionanddevelopmentthroughcrossoverandmutationoperationsSuccessionanddevelopmentinthecommunicationprocessthroughinteraction,integration,mutation,etc.DifferentInbiologicalevolution,variationisrandom,onlyafewgoodvariationcanberetainedinnaturalselectionCulturaltransmissionprocessoftenwithfullknowledge-basedprofessionalfields,evolutionisfasterHawkins(1976)raisedmemenotion第3頁IntroductionInspiredbybothDarwinianprinciplesofnaturalevolutionandDawkins'notionofameme,theterm“MemeticAlgorithm”(MA)wasintroducedbyMoscatoin1989whereheviewedMAasbeingclosetoaformofpopulation-basedhybrid

geneticalgorithm(GA)coupledwithanindividuallearningprocedurecapableofperforminglocalrefinements.Ingeneral,usingtheideasofmemeticswithinacomputationalframeworkiscalled"MemeticComputingorMemeticComputation"(MC).MAisamoreconstrainednotionofMC.Morespecifically,MAcoversoneareaofMC第4頁ThedevelopmentofMAs—1st

generationamarriagebetweenapopulation-basedglobalsearch(oftenintheformofanevolutionaryalgorithm)coupledwithaculturalevolutionarystage.ThissuggestswhythetermMAstirredupcriticismsandcontroversiesamongresearcherswhenfirstintroduced.Pseudocode:Procedure

MemeticAlgorithm

Initialize:Generateaninitialpopulation;

while

StoppingconditionsarenotsatisfieddoEvaluateallindividualsinthepopulation.Evolveanewpopulationusingstochasticsearchoperators.Selectthesubsetofindividuals,thatshouldundergotheindividualimprovementprocedure.

for

eachindividualindoPerformindividuallearningusingmeme(s)withfrequencyorprobabilityofforaperiodof.ProceedwithLamarckianorBaldwinianlearning.

endforendwhileHybrid

Algorithms第5頁ThedevelopmentofMAs—2nd

generationexhibitingtheprinciplesofmemetictransmissionandselectionintheirdesign.InMulti-memeMA,thememeticmaterialisencodedaspartofthe

genotype.MAconsideringmultipleindividuallearningmethodswithinanevolutionarysystem,thereaderisreferredto.Multi-meme,Hyper-heuristicandMeta-LamarckianMA第6頁ThedevelopmentofMAs—3nd

generationCo-evolution[8]

andself-generatingMAs[9]

Incontrastto2ndgenerationMAwhichassumesthatthememestobeusedareknownapriori,3rdgenerationMAutilizesarule-basedlocalsearchtosupplementcandidatesolutionswithintheevolutionarysystem,thuscapturingregularlyrepeatedfeaturesorpatternsintheproblemspace.第7頁Thebasicmodel

of

MAsInitialpopulationTheinitialparametersofthealgorithmpopSizePopulationsizeoffspringSizeThenumberobtainedbytheoffspringgeneratingfunctionlLengthcodingFFitnessfunctionGGeneratingfunctionUUpdatefunctionLCollectionoflocalsearchstrategy第8頁MAMethodForalltheproblemswewanttofindtheoptimalsolution.facingafundamentalquestionhowtogenerationPseudocode:ProcessDo-Generation(↓↑pop:individual[])variablesbreeders,newpop:Individual[];beginbreeders←Select-From-Population(pop);newpop←Generate-New-Population(breeders);pop←Update-Population(pop,newpop)end第9頁MAMethod

ForGenerate-New-Populationprocess,themosttypicalsituationinvolvesutilizingjusttwooperators:

recombinationandmutation.Pseudocode:ProcessGenerate-New-Population(↓pop:Individual[],↓op:Operator[])→Individual[]variablesbuffer:Individual[][];j:[1..|op|];beginbuffer[0]←pop;forj←1:|op|dobuffer[j]←Apply-Operator(op[j],buffer[j?1]);Endfor;第10頁Inessence,amutationoperatormustgenerateanewsolutionbypartly

modifyinganexistingsolution.Thismodificationcanberandom–asitistypicallythecase–orcanbeendowedwithproblem-dependentinformationsoastobiasthesearchtoprobably-goodregionsofthesearchspaceMAMethod第11頁MAMethodPseudocode:ProcessLocal-Improver(↓↑current:Individual,↓op:Operator)

variables

new:Individual

begin

repeat

new←Apply-Operator(op,current);

if(Fg(new)?Fg(current))then

current←new;

endif

untilLocal-Improver-Termination-Criterion();

returncurrent;

end第12頁MAMethodAfterhavingpresentedtheinnardsofthegenerationprocess,wecannowhaveaccesstothelargerpicture.ThefunctioningofaMAconsistsoftheiterationofthisbasicgenerationalstepPseudocode:ProcessMA()→Individual[]

variables

pop:Individual[];

begin

pop←Generate-Initial-Population();

repeat

pop←Do-Generation(pop)

ifConverged(pop)then

pop←Restart-Population(pop);

endif

untilMA-Termination-Criterion()

end第13頁MAMethodTheGenerate-Initial-Populationprocessisresponsibleforcreatingtheinitialsetof|pop|configurationsPseudocode:ProcessGenerate-Initial-Population(↓μ:N)→Individual[]

variables

pop:Individual[];

ind:Individual;

j:[1..μ];

begin

forj←1:μdo

ind←Generate-Random-Solution();

pop[j]←Local-Improver(ind);

endfor

returnpop

end第14頁MAMethodConsiderthatthepopulationmayreachastateinwhichthegenerationofnewimprovedsolutionbeveryunlikelyPseudocode:ProcessRestart-Population(↓pop:Individual[])→Individual[]

variables

newpop:Individual[];

j,#preserved:[1..|pop|];

begin

#preserved←|pop|·%PRESERVE;

forj←1:#preserveddo

newpop[j]←ithBest(pop,j);

endfor

forj←(#preserved+1):|pop|do

newpop[j]←Generate-Random-Configuration();

newpop[j]←Local-Improver(newpop[j]);

endfor;

returnnewpop

end第15頁MAsInfact,MAsisageneticalgorithmframework,isaconcept,inthisframework,usingdifferentsearchstrategiescanconstitutedifferentMAs,suchasglobalsearchstrategycanbeusedgeneticalgorithms,evolutionstrategies,evolutionaryprogramming,etc.localsearchstrategycanbeusedtoclimbthesearch,simulatedannealing,greedyalgorithms,tabusearch,guidedlocalsearch.第16頁Applicationsmanyclassical

NP

problemForexamplegraphpartitioning,

multidimensionalknapsack,

travellingsalesmanproblem,

quadraticassignmentproblem,

setcoverproblem,

minimalgraphcoloring,

maxindependentsetproblem,

binpackingproblem.Comparisonwiththegeneticalgorithmconvergesfaster,betterresults.第17頁Example

第18頁Example

第19頁Example

第20頁Example

第21頁Example

第22頁ExampleStepusingsimulatedannealingalgorithmforlocalsearchSTEP1Givenaninitialtemperature,Individualastheinitialstateofthesimulatedannealingalgorithm;STEP2Generateanewstate,theneighborhoodfunctiondefinedasInotherstatesofthetwoitemstochoose;STEP3

calculatethenumberofoldandnewstateenergy,theenergyfunctionalIsde

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論