人教版八年級上冊數(shù)學(xué)課件:11322多邊形的外角和_第1頁
人教版八年級上冊數(shù)學(xué)課件:11322多邊形的外角和_第2頁
人教版八年級上冊數(shù)學(xué)課件:11322多邊形的外角和_第3頁
人教版八年級上冊數(shù)學(xué)課件:11322多邊形的外角和_第4頁
人教版八年級上冊數(shù)學(xué)課件:11322多邊形的外角和_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

11.3.2.2多邊形的外角和11.3.2.2多邊形的外角和一、三維目標(biāo)知識目標(biāo)了解多邊形的外角和,進一步了解轉(zhuǎn)化的數(shù)學(xué)思想。能力目標(biāo)1、讓學(xué)生經(jīng)歷猜想、探索、推理、歸納等過程,發(fā)展學(xué)生的合情推理能力和語言表達(dá)能力,掌握復(fù)雜問題化為簡單問題,化未知為已知的思想方法。2、通過把多邊形轉(zhuǎn)化為三角形,體會轉(zhuǎn)化思想在幾何中的運用,讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。3、通過探索多邊形的外角,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題。情感目標(biāo)通過學(xué)生間交流、探索,進一步激發(fā)學(xué)生的學(xué)習(xí)熱情,求知欲望,養(yǎng)成良好的數(shù)學(xué)思維品質(zhì)。二、教學(xué)重難點1、重點探索多邊形的外角和2、難點如何把多邊形轉(zhuǎn)化,推導(dǎo)多邊形的外角和。三、教學(xué)過程人教版八年級上冊數(shù)學(xué)課件:11322多邊形的外角和

多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和外角和

在每個頂點處取這個多邊形的一個外角,它們的和叫做這個多邊形的外角和。︵α多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這如圖,在五邊形的每個頂點處各取一個外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?你有什么方法?

6E

BCD1

2

3

4

5

A多邊形的外角和

7

10

9

8各抒己見如圖,在五邊形的每個頂點處各取一個外角,這些外角的和叫做五邊ABCDE45123請同學(xué)們分組動手量出所畫的五邊形的外角和是多少?除了用量角器度量外你還有什么方法解決它呢?ABCDE45123請同學(xué)們分組動手量出所畫的五邊形的外角和∵∠1+∠6=1800,∠2+∠7=1800,∠3+∠8=1800,

∠4+∠9=1800,∠5+∠10=1800

E

BCD1

2

3

4

5

A

9

7

8

10

6∴∠1+∠6+∠2+∠7+∠3+∠8+∠4+∠9+∠5+∠10=5×1800∴∠1+∠2+∠3+∠4+∠5=5×1800-(∠6+∠7+∠8+∠9+∠10)∵∠6+∠7+∠8+∠9+∠10=(5-2)×1800∴∠1+∠2+∠3+∠4+∠5=5×1800-(5-2)×1800=3600∵∠1+∠6=1800,∠2+∠7=1800,∠3+如圖,在六邊形的每個頂點處各取一個外角,這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少?多邊形的外角和如圖,在六邊形的每個頂點處各取一個外角,這些外角的和叫做六邊探究在n邊形的每個頂點處各取一個外角,這些外角的和叫做n邊形的外角和.n邊形外角和結(jié)論:n邊形的外角和等于360°.-(n-2)×180°=360°

A1E

BCD

2

3

4

5F

n=n個平角-n邊形內(nèi)角和=n×180

°

n邊形外角和是多少度?探究在n邊形的每個頂點處各取一個外角,這些外角的和叫做n每個內(nèi)角的度數(shù)是每個外角的度數(shù)是回想正多邊形的性質(zhì),你知道正多邊形的每個內(nèi)角是多少度嗎?由此你能得出每個外角的度數(shù)嗎?每個內(nèi)角的度數(shù)是每個外角的度數(shù)是回想正多練習(xí)2:已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個多邊形的邊數(shù).

解:設(shè)多邊形的邊數(shù)為n.∵它的內(nèi)角和等于(n-2)?180°,多邊形外角和等于360o,∴(n-2)?180°=2×360o.解得:n=6.∴這個多邊形的邊數(shù)為6.練習(xí)2:已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個課堂練習(xí)1.若一個多邊形的每一個外角都等于15°,則這個多邊形的邊數(shù)是________

2.若一個十邊形的每個外角都相等,則它的每個外角的度數(shù)為________度,每個內(nèi)角的度數(shù)為________度.3.若一個多邊形的內(nèi)角和等于它的外角和,則它的邊數(shù)是_______.4.多邊形的邊數(shù)增加1,則內(nèi)角和增加___度.外角和增加_____度243614441800課堂練習(xí)1.若一個多邊形的每一個外角都等于15°,則這個多邊5.若多邊形的每個內(nèi)角與相鄰?fù)饨堑谋榷际?∶2,求這個

多邊形的每個外角為多少度?它是幾邊形?解:設(shè)這個多邊形的每個內(nèi)角與相鄰?fù)饨堑亩葦?shù)分別為3x?、2x?.

則3x+2x=180.

解得x=36∴2x=72.∴360?÷72?=5答:這個多邊形的每個外角為72?,它是五邊形。5.若多邊形的每個內(nèi)角與相鄰?fù)饨堑谋榷际?∶2,求這個

6.如圖,小亮從A點出發(fā)前進10m,向右轉(zhuǎn)15度,再前進10m,又向右轉(zhuǎn)15度,…

這樣一直走下去,他第一次回到出發(fā)點時,一共走了米?A2406.如圖,小亮從A點出發(fā)前進10m,向右轉(zhuǎn)15度,7.是否存在一個多邊形,它的每個外角都等于相鄰內(nèi)角的1\5?為什么?解:設(shè)它的外角為X度.則它的內(nèi)角為5X度依題意得:

X+5X=180

6X=180..

X=30

因為任何一個多邊形它的外角和為360°.

所以有360÷30=12邊

這是一個每內(nèi)角相等的12邊形.7.是否存在一個多邊形,它的每個外角都等于相鄰內(nèi)角的1\5?今天的收獲

2、利用類比歸納、轉(zhuǎn)化的學(xué)習(xí)方法,可以把多邊形問題轉(zhuǎn)化為三角形問題來解決;外角問題轉(zhuǎn)化為內(nèi)角來解決.

3、方程的數(shù)學(xué)思想在幾何中有重要的作用.

本節(jié)課你學(xué)會哪些知識?學(xué)會了哪些解決問題的方法?你還有哪些疑問?

1、n邊形的外角和等于360°.

今天的收獲

2、利用類比歸納、轉(zhuǎn)化的學(xué)習(xí)方法,可以再見再見11.3.2.2多邊形的外角和11.3.2.2多邊形的外角和一、三維目標(biāo)知識目標(biāo)了解多邊形的外角和,進一步了解轉(zhuǎn)化的數(shù)學(xué)思想。能力目標(biāo)1、讓學(xué)生經(jīng)歷猜想、探索、推理、歸納等過程,發(fā)展學(xué)生的合情推理能力和語言表達(dá)能力,掌握復(fù)雜問題化為簡單問題,化未知為已知的思想方法。2、通過把多邊形轉(zhuǎn)化為三角形,體會轉(zhuǎn)化思想在幾何中的運用,讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。3、通過探索多邊形的外角,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題。情感目標(biāo)通過學(xué)生間交流、探索,進一步激發(fā)學(xué)生的學(xué)習(xí)熱情,求知欲望,養(yǎng)成良好的數(shù)學(xué)思維品質(zhì)。二、教學(xué)重難點1、重點探索多邊形的外角和2、難點如何把多邊形轉(zhuǎn)化,推導(dǎo)多邊形的外角和。三、教學(xué)過程人教版八年級上冊數(shù)學(xué)課件:11322多邊形的外角和

多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和外角和

在每個頂點處取這個多邊形的一個外角,它們的和叫做這個多邊形的外角和。︵α多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這如圖,在五邊形的每個頂點處各取一個外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?你有什么方法?

6E

BCD1

2

3

4

5

A多邊形的外角和

7

10

9

8各抒己見如圖,在五邊形的每個頂點處各取一個外角,這些外角的和叫做五邊ABCDE45123請同學(xué)們分組動手量出所畫的五邊形的外角和是多少?除了用量角器度量外你還有什么方法解決它呢?ABCDE45123請同學(xué)們分組動手量出所畫的五邊形的外角和∵∠1+∠6=1800,∠2+∠7=1800,∠3+∠8=1800,

∠4+∠9=1800,∠5+∠10=1800

E

BCD1

2

3

4

5

A

9

7

8

10

6∴∠1+∠6+∠2+∠7+∠3+∠8+∠4+∠9+∠5+∠10=5×1800∴∠1+∠2+∠3+∠4+∠5=5×1800-(∠6+∠7+∠8+∠9+∠10)∵∠6+∠7+∠8+∠9+∠10=(5-2)×1800∴∠1+∠2+∠3+∠4+∠5=5×1800-(5-2)×1800=3600∵∠1+∠6=1800,∠2+∠7=1800,∠3+如圖,在六邊形的每個頂點處各取一個外角,這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少?多邊形的外角和如圖,在六邊形的每個頂點處各取一個外角,這些外角的和叫做六邊探究在n邊形的每個頂點處各取一個外角,這些外角的和叫做n邊形的外角和.n邊形外角和結(jié)論:n邊形的外角和等于360°.-(n-2)×180°=360°

A1E

BCD

2

3

4

5F

n=n個平角-n邊形內(nèi)角和=n×180

°

n邊形外角和是多少度?探究在n邊形的每個頂點處各取一個外角,這些外角的和叫做n每個內(nèi)角的度數(shù)是每個外角的度數(shù)是回想正多邊形的性質(zhì),你知道正多邊形的每個內(nèi)角是多少度嗎?由此你能得出每個外角的度數(shù)嗎?每個內(nèi)角的度數(shù)是每個外角的度數(shù)是回想正多練習(xí)2:已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個多邊形的邊數(shù).

解:設(shè)多邊形的邊數(shù)為n.∵它的內(nèi)角和等于(n-2)?180°,多邊形外角和等于360o,∴(n-2)?180°=2×360o.解得:n=6.∴這個多邊形的邊數(shù)為6.練習(xí)2:已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個課堂練習(xí)1.若一個多邊形的每一個外角都等于15°,則這個多邊形的邊數(shù)是________

2.若一個十邊形的每個外角都相等,則它的每個外角的度數(shù)為________度,每個內(nèi)角的度數(shù)為________度.3.若一個多邊形的內(nèi)角和等于它的外角和,則它的邊數(shù)是_______.4.多邊形的邊數(shù)增加1,則內(nèi)角和增加___度.外角和增加_____度243614441800課堂練習(xí)1.若一個多邊形的每一個外角都等于15°,則這個多邊5.若多邊形的每個內(nèi)角與相鄰?fù)饨堑谋榷际?∶2,求這個

多邊形的每個外角為多少度?它是幾邊形?解:設(shè)這個多邊形的每個內(nèi)角與相鄰?fù)饨堑亩葦?shù)分別為3x?、2x?.

則3x+2x=180.

解得x=36∴2x=72.∴360?÷72?=5答:這個多邊形的每個外角為72?,它是五邊形。5.若多邊形的每個內(nèi)角與相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論