![技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件_第1頁](http://file4.renrendoc.com/view/a8f46204196281040f0a5746e94d8d24/a8f46204196281040f0a5746e94d8d241.gif)
![技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件_第2頁](http://file4.renrendoc.com/view/a8f46204196281040f0a5746e94d8d24/a8f46204196281040f0a5746e94d8d242.gif)
![技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件_第3頁](http://file4.renrendoc.com/view/a8f46204196281040f0a5746e94d8d24/a8f46204196281040f0a5746e94d8d243.gif)
![技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件_第4頁](http://file4.renrendoc.com/view/a8f46204196281040f0a5746e94d8d24/a8f46204196281040f0a5746e94d8d244.gif)
![技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件_第5頁](http://file4.renrendoc.com/view/a8f46204196281040f0a5746e94d8d24/a8f46204196281040f0a5746e94d8d245.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Example:P=$500A=$140n=10NPV=?
i(%)01020253040∝ NPV900
360
87
0
-67
-162-500
Example:ROR的意義:從收益的觀點看,ROR就是項目所能達到的最高收益水平。ROR的意義:ROR的意義:從收益的觀點看,ROR就是項目所能達到的最高收益水平。ROR的意義:NPV是折現(xiàn)率ic的函數(shù),ic連續(xù),則NPV可導(dǎo)。一階導(dǎo)數(shù):NPV函數(shù)曲線單調(diào)遞減。二階導(dǎo)數(shù):NPV函數(shù)曲線凸向原點。技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件當ic=0,當ic趨向于無窮大,NPV=NCF0技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件3.4RateofReturnAnalysisTherateofreturnanalysisisprobablythemostpopularcriterionineconomicanalysis.It'spopularitystemsfromtheeasewithwhichacommonpersoncanunderstandthemeaningofrateofreturn.Mostoftheinvestmentbrochureswilluserateofreturnonyourinvestmentasacriteriontoshowhowgoodagiveninvestmentopportunityis.Itismucheasiertounderstandthat"aprojectwillprovide20%returnonyourinvestment"than"theprojectwillresultinaNPVof$5,000."Unfortunately,althoughsimpletounderstand,thetechniquehassomemajordrawbacks.Inthissection,inadditiontoexplaininghowtocalculatetherateofreturn(ROR),wewilldiscusstheadvantagesanddisadvantagesofthistechnique.3.4RateofReturnAnalysisRateofreturnhastwodefinitions.Onedefinitioncanbestatedas“theinterestrateearnedontheunpaidbalanceofaloansuchthatthepaymentschedulemakestheunpaidbalanceequaltozerowhenthefinalpaymentismade.”Considerasimpleexampletoillustratethisdefinition.
1001,000$1,00010010012n-1nFigure3.9:ALoanof$1,000withaUniformPaymentofInterestRateofreturnhastwodefinitAssumethatyoutakealoanof$1,000fromabankataninterestrateof10%foraperiodoffouryears.Everyyear,includinglastyear,youpayaninterestof$100tothebank.Attheendoffouryears,youpaytheprincipalamountof$l,000.Therefore,attheendoffouryearstheunpaidbalanceiszero.Therateofreturnforthebankis(l,00/1000=)10%.Schematically,thecashflowisshowninFig.3.9.AssumethatyoutakealoanofThisdefinitioncanbeturnedaroundtostatethatthe"rateofreturnistheinterestrateearnedontheunrecoveredinvestmentsuchthatthepaymentschedulemakestheunrecoveredinvestmentequaltozeroattheendofthelifeoftheinvestment."Usingasimilarexampleasbefore,letusassumethatyouhaveinvested$10,000inthebankataninterestrateof6%forfiveyears.Attheendofeachyear,youwithdraw$600ininterestandattheendoffiveyears,youwithdraw$10,000.Theinvestmentinthebankattheendoffiveyearsis,therefore,zero.Youcanconsiderthattherateofreturnontheinvestmentis(600/10,000=)6%.Schematically,thecashflowprofileisshowninFig.3.10ThisdefinitioncanbeturnedFigure3.10:Investmentof$10,000withaUniformPaymentofInterest12n-1n60010,000$10,000600600Figure3.10:Investmentof$10Mathematically,therateofreturn(ROR)isdefinedastherateatwhichnetpresentworth(NPV)foragiveninvestmentisequaltozero.Inequationform,therateatwhich,(3.4)istherateofreturn.Inotherwords,therateatwhichNPV=03.5)IfweassumethatthecashflowforaparticularprojectisgivenbyAjwhereAjrepresentsthecashflowinyearj,wecanwritetheequationforNPVas,(3.6)IfwedefinetherateiRcorrespondingtotherateatwhichNPViszero,wecanwritetheequationforiRas,
(3.7)Mathematically,therateofreObservingEq.3.7,wenoticethattheequationrepresentsapolynomial(多項式)iniR
whichmayresultinnpossiblesolutionsforiR
whichwillsatisfyEq.3.7.Ineconomicanalysis,weareonlyinterestedinrealsolutions.Althoughnegativerateofreturnisarealvalue,wemaynotbeinterestedinaninvestmentofnegativerateofreturn.Asapracticalmatter,wearesearchingforpositive,realsolutionsofthisequation.Inmostinstances,wewillobtainonlyonepositive,realsolutionwhichrepresentstherateofreturn.Thisisshowninthefollowingexamples.ObservingEq.3.7,wenoticethExample3.17Calculatetherateofreturnforthefollowingcashflow.Year01234CashFlow-4,0002,5001,8001,300900SolutionUsingthecashflows,wecanwritetheequationforNPVas,Sincethisisapolynomialequationini,wewillhavetosolveitbytrialanderror,
Example3.17CalculatetheraSincethevalueofNPVchangesasignbetweeni=15%andi=35%,therateofreturnshouldfallinbetweenthetwovalues.Bylinearinterpolation(線形內(nèi)插法),wecanwriteanapproximateequationfortherateofreturn(ROR)as,(3.8)wherei+andi-respectivelyrepresentthevialvalueswhichresultedinpositiveandnegativeNPVvalues,andNPV+andNPV_representthepositiveandthenegativeNPVvaluesrespectively.Inourexample,SincethevalueofNPVchangesTherefore,WecancalculatetheNPVat29.3%.NPV=-66.5Althoughclosetozero,wecantryonemoreinterpolationbetween15%and29.3%.NPVat28.3%=-10.2Wewouldassumethisvaluetobecloseenoughtozero.Youmaynotethathigheristhedifferencebetweenthei+andi-,biggerwillbethedeviation(背離)betweenthetrueRORandtheinterpolatedvalue.Therefore,theinterpolationmayhavetobecarriedoutmorethanoncetoobtainacorrectvalueoftheROR.Therefore,Example3.18Byinvesting$10,000inaproject,youarepromisedthatyouwillearn$2,700peryearforaperiodofsixyears.WhatistheRORforthisinvestment?SolutionFori=10%,Fori=20%,
UsingEq.3.8,
For16.3%,NPV=-129Ati=15.8%NPV=1.7≈0Therefore,therateofreturnis15.8%.Example3.18Byinvesting$10Fromtheaboveexamples,onecanseethattheRORcalculationhastobedonebytrialanderror.Manytimes,itisverydifficulttoassumetheinitialvalueofinterestrate.Onewaytoovercomethisproblemistousearatioofperiodicpaymenttoinitialinvestment.Wecanshowthatiftheinitialinvestmentisequaltothesalvagevalue,theRORcanbecalculatedas,Fromtheaboveexamples,onecUsingEq.3.9,ifthesalvagevalueislessthantheinitialinvestment,
Ontheotherhand,ifthesalvagevalueisgreaterthantheinitialinvestment,
Eq.3.9throughEq.3.11areapplicableonlyiftheinvestmentismadeatthebeginningoftheprojectandtheperiodicpaymentsareequaltoeachother.UsingEq.3.9,ifthesalvagevExample3.19Asaninvestment,youboughtahousefor$50,000.Ifyoucanrentthehousefor$800permonth,andcansellthehousefor$70,000attheendoftenyears,whatistheRORonyourinvestment?SolutionLetusassumetheRORtobe.017/month.
where120isthenumberofmonthsinwhichtherentiscollected.Therefore,theRORisl.7%/month.or20.4%/year.Example3.19AsaninvestmentAscanbeseenfromtheaboveexample,byusingthecorrectinitialguess.wedidnothavetousetoomanytrialanderrors.Asimilarequationcanbedevelopedforgeometricseriesasexplainedintheexamplebelow.Example3.20Aproposalcallsforaninvestmentof$25,000inanoilpropertywhichwillresultinaninitialincomeof$6,000peryeardecliningatarateof8%peryearoverthenexttwentyyears.Whatistherateofreturn?Assumethesalvagevaluetobezero.SolutionInthisexamplewehaveageometricseries.Given:A=$6,000,n=20years,g=-0.08Usingtheequationforgeometricseries,Ascanbeseenfromtheabove技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件Afteroneadditionaltrialanderror,theROR=15.7%.TheRORcanalsobecalculatedusingagraphicalprocedure.Foratypicalinvestmentscenario,wecallassumedifferentinterestratesandcalculatetheNPVasafunctionoftheinterestrate.AsshowninFig.3.ll,byconnectingthepoints,wecancalculatetheRORcorrespondingtoapointonthecurvewhereNPVisequaltozero.技術(shù)經(jīng)濟學(xué)英文版演示文稿C32課件Figure3.11:RORDeterminationFigure3.11:RORDeterminatio3.4.lEconomicCriteriaAsstatedbefore,theRORtechniqueisprobablythemostusedtechniqueineconomicanalysis.Itiseasytounderstand.Sinceeveryoneunderstandstheinterestrate,rateofreturnisequatedtoreturnoninvestmentintermsofaninterestratethatwouldbeearned.Intuitively(直觀地講),whencomparingtwoinvestments,onefetchingahigherRORisalwaysmoreattractive.Inacorporatestructure,toevaluatethefeasibilityofaproject,weneedtocomparetheRORtotheminimumrateofreturn(MROR).IftheROR>MROR,theprojectisselected;iftheROR<MROR,theprojectwillberejected.3.4.lEconomicCriteriaExample3.23Thefollowingtwoalternativesareconsideredforaproject,(a)(b)InitialInvestment$50,000$500,000AnnualBenefit$25,000$125,000Life,Years55SalvageValue$50,000$500,000IftheMRORis20%,whichalternativeshouldbeselected?Example3.23ThefollowingtSolutionThefirststepistoestimatetheRORoftheindividualalternativesandcomparetheRORwiththeMROR.IftheRORislessthantheMROR,thealternative(s)shouldberejected.Inthisexample,sincethesalvagevalueisequaltotheinitialinvestment,usingEq.3.9.SincetheRORa>MRORandRORb>MROR,bothalternativessatisfythefeasibilitycriterion.SolutionIntuitively,sinceRORa>RORb,onemaybeinclinedtoselect(a)over(b),butnoticethattheinitialinvestmentforbothalternativesisnotthesame.OneofthedrawbacksoftheRORanalysisisitsinability(無能)toaccountfortheinvestmentamount.Toproperly(完全)accountfortheinvestment,weneedtoconductincrementalanalysis.Thatis,tofindoutbyinvestingadditional(incremental)$450,000inalternative(b),whatincrementalbenefitarereceived?Subtractingvaluesrelatedtoalternative(a)fromalternative(b),weobtain,Intuitively,sinceRORa>RORbForincrementalinvestment,wecancalculatetheRORbyEq.3.9(sincetheinvestment=thesalvagevalue),a-bInitialInvestment$450,000AnnualBenefit$10,000Life,Years5SalvageValue$450,000Forincrementalinvestment,weThisnumberindicatesthattheRORonincrementalinvestmentis22.2%whichisgreaterthantheMROR.Inotherwords,byinvestinganadditional$450,000,wewillearnaRORof22.2%.Ontheotherhand,ifwedonotinvestanadditional$450,000inalternativeb,wewillearnonlyMRORonthatadditionalamount.Therefore,itismoreattractivetoinvesttheadditional$450,000inalternativeb.Thatis,toselectalternativebovera.ThisanalysiscanbeeasilyconfirmedbycalculatingtheNPVforboththealternativesatMROR.ThisnumberindicatesthattheForalternativea,Foralternativeb,ince(NPV)b>(NPV)a,alternativebshouldbechosen.Thisisconsistentwiththeanswerweobtainedfromtheincrementalanalysis.Foralternativea,Togeneralize,iftwoalternativesrequiringdifferentamountsofinvestmentneedtobecompared,weshouldcarryoutanincrementalanalysis.If△ROR≥MROR,weshouldselectanalternativerequiringalargerinvestment.If△
ROR<MROR,weshouldselectanalternativerequiringasmallerinvestment.Theprocedurecanbeeasilyextendedwhenconsideringmorethantwoalternatives.Briefly,thestepwiseprocedureforincrementalanalysiscanbestatedasa.CalculatetheRORforeachalternative.IfROR>MROR,assumethatthealternativeisfeasibleandretainitforfurtherincrementalanalysis.IftheROR<MROR,removethealternativefromfurtheranalysis.Togeneralize,iftwoalternatb.Taketwoalternativesrequiringthesmallestinvestments.CalculatetheRORontheincrementalinvestmentbysubtractingthesmallerinvestmentfromthelargerinvestment.WedenotetheRORonincrementalanalysisasROR.If△
ROR≥MROR,selectthealternativerequiringthelargerinvestment;if△
ROR<MROR,selectthealternativerequiringthesmallerinvestment.Removetherejectedalternativefromfurtheranalysis.c.Taketheremainingalternativeandcompareitwiththealternativerequiringthenextlargestinvestment.CalculatetheincrementalROR.If△
ROR≥MROR,selectthealternativerequiringthelargerinvestment;if△
ROR<MROR,selectthealternativerequiringthesmallerinvestment.Removetherejectedalternativefromfurtheranalysis.d.Repeatstep(c)tillonlyonealternativeremains.
b.TaketwoalternativesrequiExamp1e3.24Thefollowingthreealternativesareconsideredforaproject.IfMRORis15%,selecttheappropriatealternative.(a)(b)(c)InitialInvestment$1,000$3,000$6,000AnnualBenefit$300$1,000$1,800Life,Years101010SalvageValue$1,000$3,000$6,000Examp1e3.24ThefollowingthSolutionSinceRORforallthealternativesisgreaterthantheMROR,allarefeasible.Instep(b)takethetwoalternativesrequiringthesmallestinvestment.Inthisexample,wewillconsideralternatives(a)and(b)forincrementalanalysis,SolutionTherefore,Since△
RORb-a>MROR,select(b)over(a).Eliminatealternative(a)fromfurtheranalysis.Inthenextstep(stepc),compare(b)withtheremainingalternative(c).Forincrementalanalysis,(b)-(a)InitialInvestment$2,000AnnualBenefit$700Life,Years10SalvageValue$2,000Therefore,(b)-(a)InitialInvTherefore,SinceROR.c-b>MROR,select(c)over(b).Aftereliminating(b),weareleftwithonlyalternative(c).Thiswillbeourchoice.(c)-(b)InitialInvestment$3,000AnnualBenefit$800Life,Years10SalvageValue$3,000Therefore,(c)-(b)InitialTosummarize,theeconomiccriterionappliedfortherateofreturnanalysisforasingleproject:iftheROR>MROR,theprojectisselected;iftheROR<MROR,theprojectisrejected.Foraprojecthavingmultiplealternatives,anincrementalanalysisneedstobeconductedsolongasthereisadifferenceinthecashflowprofilesoftwoprojects.Onlyafterapplyingtheincrementalanalysis,thesolutionwillbeconsistentwiththeNPVanalysis.Tosummarize,theeconomiccri3.4.2MultipleRatesofReturnInadditiontotherequirementofincrementalanalysis,theRORanalysismethodalsohasanotherdrawback.Thismethodworkswellwhenagivenalternativerequiresaninitialinvestmentwhichisfollowedbyfuturebenefits.Forthistypeofalternative,thecashflowprofilecanbeshownasnegativecashflowinthefirstyearfollowedbypositivecashflowinthefutureyears.Forexample,ifweconsideraninvestmentof$1,000whichwillresultina$300annualbenefitforthenextsixyearswitha$500salvagevalueattheendofsixyears,thecashprofilecanbewrittenas.Year01234567CashFlow-1,000300300300300300300300+5003.4.2MultipleRatesofRetuInthisprofile,thereisonlyonesignchangeincashprofilebetweenYears0and1.SuchprofileisamenabletoconventionalRORanalysis.NotethattheRORcalculationrequiressolvingapolynomialofi.WecalculatethevalueofiforwhichtheNPViszero.Foreconomicanalysis,weareonlyinterestedinobtainingpositive,realvaluesofiforwhichtheNPVisequaltozero.Whenthereisonlyonesignchangeinthecashflowprofile,asshownabove,wecanonlyobtainoneorzeropositivesolutions.Inthisprofile,thereisonlyInsomeinstances,however,thesignchangesmorethanonceinacashflowprofile.Underthesecircumstances,wemayobtainmorethanonerealROR.Theruleofsignsforpolynomialsolutionstatesthatthenumberofrealsolutionsbetween-land∞isnevergreaterthanthenumberofsignchanges.Thatis,ifwehavetwosignchanges,wemayobtainamaximumoftworatesofreturnvaluesbetween-100%and∞.Thefollowingexampleillustratesthecalculationofthenumberoffeasiblesolutions.Insomeinstances,however,thExample3.25ForthefollowingfourcashRORbetween-100%and∞.PeriodABCD0-100-100300-500120120-200300220-3010030033050100-1004207020010053030-30-1006202010050Example3.25ForthefollowiSolutionTocalculatethemaximumnumberofpossiblerealsolutionsbetween-100%and∞,wecancalculatethenumberofsignchanges.ForcashflowA,thereisonlyonesignchangebetweenperiod0andl.ForB,therearethreesignchanges;betweenperiods0andl,periodsland2,and3.Similarly,forcashflowC,therearefoursignchanges,andforcashflowD,therearefivesignchanges.Asstatedbefore,thenumberofsignchangeswillindicatethemaximumnumberofpossiblerealsolutions.Thatis,forcashflowprofileC,thenumberofrealsolutionsbetween–100%and∞canbeeither4,3,2,l.orzero.SolutionThenumberofpossiblerealsolutionscanbenarroweddownevenfurtherbyapplyingcumulativecashflowsigntest.IfweassumeAjtobeacashflowinperiodj,thenwecandefinethecumulativecashflowCjas,IfCjstartswithanegativenumberandchangessignonlyonce,wewillobtainonlyonepositivesolution.ThiscumulativecashflowmethodmayallowustonarrowdownthenumberofpossiblesolutionsfortheROR.ThenumberofpossiblerealsoExample3.26ReconsiderthecashflowsprovidedinExample3.23.Applyingthecumulativecashflowsigntest,investigatethepossibilityofnarrowingthenumberofpositiveRORsolutions.SolutionWecancalculatethecumulativecashflowsforeachoftheprofilesasfollows:PeriodProjectAProjectBProjectCProjectDAjCjAjCjAjCjAjCj0-100-100-100-100300300-500-500120-8012020-200100300-200220-60-30-10100200300100330-305040100300-1000420-10701102005001001005301030140-30470-100062050201601005705050Example3.26ReconsiderthAsasamplecalculation,forperiod3forProjectA,wecancalculate.C3=-100+20+20+30=-30Forperiod6,C6=-100+20+20+30+20+30+30=50Lookingatthecashflowprofiles,forcashflowprofilesAandD,thereinonlyonesignchangeinthecumulativecashflowprofile.Thatis,wewillobtainonlyoneuniquepositivevalueoftheROR.ForcashflowprofilesBandC,theresultsofcumulativecashflowprofilesareinconclusive.Wecannotreducethepossiblenumberofsolutionsbyusingthecumulativecashflowprofileforthesetwoprofiles.Asasamplecalculation,forpExample3.27Anin-filldrillingprojectisbeingconsideredforanexistingoilfieldtoaccelerateoilrecovery.Thefollowingtwoscenarios,basedontwoalternatives(noin-filldrillingversusin-filldrilling)arepredicted.Whichalternativewouldyouselect?Thenumbersareinmillions.AssumethatMRORis20%.Year0123456A(nodrilling)030201814106B(in-filldrilling)-2060406420Example3.27Anin-filldrillSolutionThefirststepinRORanalysisistocompareindividualROR'sforeachalternativewiththeMROR.ForalternativeA,thereisnosignchangeinthecashflowprofile.Therefore,theRORforalternativeAis∞.ForalternativeB,RORcanbeshowntobegreaterthan20%(theRORforalternativeBis260%).Therefore,bothalternativessatisfytherequirementthattheRORbegreaterthantheMROR.Thenextstepistoconducttheincrementalanalysis.Thecashflowprofileforincrementalvaluescanbewrittenas,SolutionThecashflowprofileshowsmorethanonesignchange.Thecumulativecashflowprofilealsoshowsmorethanonesignchange.ThisindicatesthepossibilityofmorethanonepositiveRORsolution.NPVforanyinterestratecanbecalculatedas,Year0123456B-A-203020-12-10-8-6Cumulative(B-A)-2010301880-6ThecashflowprofileshowsmoFig.3.13showsaplotofNPVasafunctionofi.Figure3.13:PlotofNPVvs.iforExample3.27Asstatedbefore,theRORistherateatwhichtheNPVisequaltozero.BasedonFig.3.13,twoROR’sarepossible;11%and72%.IfweassumeRORtobe11%,thenalternativeA(analternativerequiringasmallerinvestment)shouldbeselected().IfweassumeRORtobe72%,thenalternativeB(analternativerequiringlargerinvestment)shouldbeselected().Obviously,ouranswerchangesdependingupontheselectedvalueofROR.Figure3.13:PlotofNPVvs.iforExample3.27Fig.3.13showsaplotofNPVAcorrectanswertotheproblemrequiresfurtheranalysis.BasedonFig.3.13,theNPVispositivebetween11%and72%;thatis,theadditionalinvestmentrequiredforalternativeBwillresultinpositiveNPV.Therefore,iftheMRORisanywherebetween11%and72%,weshouldselectalternativeB.Ontheotherhand,iftheMRORislessthan11%orgreaterthan72%(anunlikelyprospect),thenalternativeAshouldbeselected.Inthisexample,theMRORis20%;therefore,weshouldselectalternativeB.Togeneralize,iftheMRORfallsintherangeofinterestratewheretheNPVispositive,thealternativerequiringthelargerinvestmentshouldbeselected.IftheMRORfallsintherangewheretheNPVisnegative,thealternativerequiringasmallerinvestmentshouldbeselected.
AcorrectanswertotheprobleOneeasywaytoconfirmthisanalysisistocalculatetheNPVattheMROR(=20%)forincrementalcashflow.SinceNPVispositive,alternativeBshouldbeselected.Thisisthesamepredictedinthepreviousparagraph.Itisobviousthat,forsuchproblems(wheremorethanonesignchangeoccursincashflowanalysis),theRORanalysisisdifficulttoadopt.Abetteralternativewouldbetousethepresentworthanalysis.
OneeasywaytoconfirmthisaAAROR(IRR)的優(yōu)缺點:
易理解;與基準點無關(guān);
在項目壽命期內(nèi)任意時刻,使項目收益換算值之和等于費用換算值之和的利率稱為ROR(IRR)。
所以,ROR的計算,可以用NPV(i)=0,
NFV(i)=0,NAV(i)=0進行計算。
ROR(IRR)的優(yōu)缺點:
易理解;與基準點無關(guān);NPVIRR>0>ic=0=ic<0<icNPVIRR>0>ic=0=ic<0<icNPVIRR唯一值唯一值;無解;多解同一ic,具有可加性無可加性與基準點有關(guān)無關(guān)可用于互斥方案優(yōu)選不可用NPVIRR唯一值唯一值;無解;多解同一ic,具有可加性無
ir—再投資利率if—融資成本
ir—再投資利率
3.5GrowthRateofReturnAnalysis
ArelatedtechniquetotheRORanalysisisthegrowthrateofreturn.UnlikeRORcalculations,whichareindependentofwhatwedowiththefuturebenefits,growthrateofreturndependsonthereinvestmentofthefuturebenefits.Itassumesthatthefuturebenefitsarereinvestedatcertaininterestratesandcalculatesthefuturevalueofallthebenefitsattheendoftheusefullifeoftheproject.
3.5GrowthRateofRet
Letusillustratethisschematically.InFig.3.14,wehaveacashflowprofileforcalculationoftherateofreturn.Weinvested$l,000inthebankataninterestrateof10%peryear,andwithdrewinterestof$100peryearfor10yearsfinallywithdrawingtheinitialinvestmentof$l,000.Inthissimplescenario,therateofreturnontheinvestmentis10%.TheRORvalueisindependentofwhatwedidwiththe$100wereceivedattheendofeachyear.Wecouldhavegambleditawayorcouldhavereinvesteditinbuyingstocks.TheRORwouldstillbe10%.ThisiswhytheRORissometimescalledinternalrateofreturn.Itonlydependsoninternallygeneratedrevenues,notonexternalrates.
Letusillustratethiss
Contrastthiscashflowprofilewithacasewherethe$100revenueperyearisreinvestedintreasurybillsata6%interestrate.TheschematicdiagramisshowninFig.3.15.Wewillassumethatassoonastheannualpaymentisreceived,itisreinvestedata6%interestrate.Attheendof10years,alltheaccumulatedsumiswithdrawnincludingtheinitialinvestmentof$1000,6%rateiscalledanexternalrateofreturn.1000
Contrastthiscashflow
Inthiscase,wecancalculatethefuturevalueofreinvestedamountbyknowingtherelationshipbetweenthefuturevalueandtheperiodicpayment.Forthisexample,Inadditionto$l,318,wewillalsoreceivetheoriginalinvestmentbackresultinginatotalfuturevalueof$2,318.Ifweknowthatthe$l,000investmenthasresultedinacumulativetheassetof$2,318,wecancalculatetherateatwhichourinvestmenthasgrownbyknowingtherelationshipbetweenthefutureandthepresentvalues.Therefore,i=8.8%
Inthiscase,wecancal
Example3.28
AssumethesamevaluesasgivenintheExample3.17.Assumefurtherthattheannualbenefitearnedisreinvestedatarateof10%.CalculatetheGROR.SolutionGiven:Initialinvestment=$1,000andannualbenefit=$2,700for6years.Wecancalculatethefuturevalueoftheannualbenefitsbyassumingthatthebenefitsareinvestedat10%.UsingEq.2.5,SolvingforGROR,GROR=13%
Example3.28Assumethe
Growthrateofreturnisausefulcalculationiftherateatwhichfuturebenefitsareinvestedisknown.OnepossibilityisthatthereinvestmentratecanbeassumedtobeequaltotheMROR.Anotherpossibilityistochosearatewhichreflectsthemostconservativeinvestment;i.e.,treasurybills.Sinceanycorporationisassumedtohaveperpetualexistence,theGRORisanaccurateindicatoroftherateatwhichthetreasuryofacorporationwillgrow.
Growthrateofreturn
OnemajoradvantageoftheGRORcalculationisthatiteliminatesthetrialanderrorprocedurerequiredfortheconventionalRORanalysis.TheprocedurealsoeliminatesthepossibilityofmultipleROR'sforagivencashflow.Ifthereismorethanonesignchangeinthecashflowprofile,allpositivecashflowsaretransferredattheendoftheusefullifebyassumingthatthepositivecashflowsareinvestedattherateofreinvestment.Thisstepwillresultineliminationofmultiplesignchangesandwillresultinonlyonesignchange.
Onemajoradvantageoft
Inapplyingthegrowthrateofreturn(GROR)asacriterion,weneedtocomparethecalculatedGRORwiththeMROR.IfGROR>MROR,weconsiderthealternativetobefeasible.IfGROR<MROR,wewillrejectthealternative.ItshouldbeunderstoodthattheGRORtechniquedoesnoteliminatetheneedforincrementalanalysis.L
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (湘教版)七年級數(shù)學(xué)下冊:2.1.2《冪的乘方與積的乘方》聽評課記錄
- 人教版歷史七年級下冊第18課《統(tǒng)一多民族國家的鞏固和發(fā)展》聽課評課記錄
- 小學(xué)6年級聽評課記錄
- 蘇科版數(shù)學(xué)八年級上冊聽評課記錄《6-2一次函數(shù)(1)》
- 五年級小數(shù)口算練習(xí)題
- 華師大版數(shù)學(xué)八年級下冊《菱形的性質(zhì)》聽評課記錄2
- 蘇教版一年級口算練習(xí)題
- 蘇教版三年級數(shù)學(xué)上冊口算練習(xí)
- 蘇教版二年級上冊口算練習(xí)共7天
- 電動車管理及安全協(xié)議書范本
- 走好群眾路線-做好群眾工作(黃相懷)課件
- NY∕T 4001-2021 高效氯氟氰菊酯微囊懸浮劑
- 《社會主義市場經(jīng)濟理論(第三版)》第七章社會主義市場經(jīng)濟規(guī)則論
- 《腰椎間盤突出》課件
- 漢聲數(shù)學(xué)圖畫電子版4冊含媽媽手冊文本不加密可版本-29.統(tǒng)計2500g早教
- simotion輪切解決方案與應(yīng)用手冊
- 柴油發(fā)電機運行檢查記錄表格
- 典范英語-2備課材料2a課件
- DSC曲線反映PET得結(jié)晶度
- 科學(xué)素養(yǎng)全稿ppt課件(完整版)
- 建筑智能化培訓(xùn)課件
評論
0/150
提交評論