2022-2023學年安徽省泗縣劉圩高級中學數(shù)學高一上期末檢測模擬試題含解析_第1頁
2022-2023學年安徽省泗縣劉圩高級中學數(shù)學高一上期末檢測模擬試題含解析_第2頁
2022-2023學年安徽省泗縣劉圩高級中學數(shù)學高一上期末檢測模擬試題含解析_第3頁
2022-2023學年安徽省泗縣劉圩高級中學數(shù)學高一上期末檢測模擬試題含解析_第4頁
2022-2023學年安徽省泗縣劉圩高級中學數(shù)學高一上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設集合A={1,2,3},B={2,3,4},則A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}2.下列結論中正確的是A.若角的終邊過點,則B.若是第二象限角,則為第二象限或第四象限角C.若,則D.對任意,恒成立3.已知直線與圓交于A,兩點,則()A.1 B.C. D.4.已知集合,,若,則實數(shù)的取值范圍是()A. B.C. D.5.已知函數(shù),且,,,則的值A.恒為正 B.恒為負C.恒為0 D.無法確定6.已知兩條繩子提起一個物體處于平衡狀態(tài).若這兩條繩子互相垂直,其中一條繩子的拉力為50,且與兩繩拉力的合力的夾角為30°,則另一條繩子的拉力為()A.100 B.C.50 D.7.下列說法不正確的是A.方程有實根函數(shù)有零點B.有兩個不同的實根C.函數(shù)在上滿足,則在內有零點D.單調函數(shù)若有零點,至多有一個8.已知為奇函數(shù),當時,,則()A.3 B.C.1 D.9.直線的傾斜角是()A.30° B.60°C.120° D.150°10.下列函數(shù)是冪函數(shù)的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.定義域為上的函數(shù)滿足,且當時,,若,則a的取值范圍是______12.某地街道呈現(xiàn)東—西、南—北向的網(wǎng)格狀,相鄰街距都為1,兩街道相交的點稱為格點.若以互相垂直的兩條街道為坐標軸建立平面直角坐標系,根據(jù)垃圾分類要求,下述格點為垃圾回收點:,,,,,.請確定一個格點(除回收點外)___________為垃圾集中回收站,使這6個回收點沿街道到回收站之間路程的和最短.13.已知,則____________.(可用對數(shù)符號作答)14.寫出一個周期為且值域為的函數(shù)解析式:_________15.計算_____________.16.已知點P(-,1),點Q在y軸上,直線PQ的傾斜角為120°,則點Q的坐標為_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)若是定義在上的偶函數(shù),求實數(shù)的值;(2)在(1)條件下,若,求函數(shù)的零點18.中國茶文化博大精深,茶水的口感與茶葉類型和茶水的溫度有關.經驗表明,某種綠茶,用一定溫度的水泡制,再等到茶水溫度降至某一溫度時,可以產生最佳口感.某研究員在泡制茶水的過程中,每隔1min測量一次茶水溫度,收集到以下數(shù)據(jù):時間/min012345水溫/℃85.0079.0073.6068.7464.3660.42設茶水溫度從85°C開始,經過tmin后溫度為y℃,為了刻畫茶水溫度隨時間變化的規(guī)律,現(xiàn)有以下兩種函數(shù)模型供選擇:①;②(1)選出你認為最符合實際的函數(shù)模型,說明理由,并參考表格中前3組數(shù)據(jù),求出函數(shù)模型的解析式;(2)若茶水溫度降至55℃時飲用,可以產生最佳口感,根據(jù)(1)中的函數(shù)模型,剛泡好的茶水大約需要放置多長時間才能達到最佳飲用口感?(參考數(shù)據(jù):,)19.某企業(yè)為努力實現(xiàn)“碳中和”目標,計劃從明年開始,通過替換清潔能源減少碳排放量,每年減少的碳排放量占上一年的碳排放量的比例均為,并預計年后碳排放量恰好減少為今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量為今年碳排放量的,按照計劃至少再過多少年,碳排放量不超過今年碳排放量的?20.如圖所示,設矩形的周長為cm,把沿折疊,折過去后交于點,設cm,cm(1)建立變量與之間的函數(shù)關系式,并寫出函數(shù)的定義域;(2)求的最大面積以及此時的的值21.已知函數(shù).(1)求函數(shù)的最小正周期和單調區(qū)間;(2)求函數(shù)在上的值域.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)并集定義求解即可.【詳解】∵A={1,2,3},B={2,3,4},根據(jù)并集的定義可知:A∪B={1,2,3,4},選項A正確,選項BCD錯誤.故選:A.2、D【解析】對于A,當時,,故A錯;對于B,取,它是第二象限角,為第三象限角,故B錯;對于C,因且,故,所以,故C錯;對于D,因為,所以,所以,故D對,綜上,選D點睛:對于銳角,恒有成立3、C【解析】用點到直線距離公式求出圓心到直線的距離,進而利用垂徑定理求出弦長.【詳解】圓的圓心到直線距離,所以.故選:C4、A【解析】集合表示到的線段,集合表示過定點的直線,,說明線段和過定點的直線有交點,由此能求出實數(shù)的取值范圍【詳解】由題意可得,集合表示到的線段上的點,集合表示恒過定點的直線.∵∴線段和過定點的直線有交點∴根據(jù)圖像得到只需滿足,或故選A.【點睛】本題考查交集定義等基礎知識,考查函數(shù)與方程思想、數(shù)形結合思想,是基礎題.解答本題的關鍵是理解集合表示到的線段,集合表示過定點的直線,再通過得出直線與線段有交點,通過對應的斜率求解.5、A【解析】根據(jù)題意可得函數(shù)是奇函數(shù),且在上單調遞增.然后由,可得,結合單調性可得,所以,以上三式兩邊分別相加后可得結論【詳解】由題意得,當時,,于是同理當時,可得,又,所以函數(shù)是上的奇函數(shù)又根據(jù)函數(shù)單調性判定方法可得在上為增函數(shù)由,可得,所以,所以,以上三式兩邊分別相加可得,故選A.【點睛】本題考查函數(shù)奇偶性和單調性的判斷及應用,考查函數(shù)性質的應用,具有一定的綜合性和難度,解題的關鍵是結合題意得到函數(shù)的性質,然后根據(jù)單調性得到不等式,再根據(jù)不等式的知識得到所求6、D【解析】利用向量的平行四邊形法則求解即可【詳解】如圖,兩條繩子提起一個物體處于平衡狀態(tài),不妨設,根據(jù)向量的平行四邊形法則,故選:D7、C【解析】A選項,根據(jù)函數(shù)零點定義進行判斷;B選項,由根的判別式進行求解;C選項,由零點存在性定理及舉出反例進行說明;D選項,由函數(shù)單調性定義及零點存在性定理進行判斷.【詳解】A.根據(jù)函數(shù)零點的定義可知:方程有實根?函數(shù)有零點,∴A正確B.方程對應判別式,∴有兩個不同實根,∴B正確C.根據(jù)根的存在性定理可知,函數(shù)必須是連續(xù)函數(shù),否則不一定成立,比如函數(shù),滿足條件,但在內沒有零點,∴C錯誤D.若函數(shù)為單調函數(shù),則根據(jù)函數(shù)單調性的定義和函數(shù)零點的定義可知,函數(shù)和x軸至多有一個交點,∴單調函數(shù)若有零點,則至多有一個,∴D正確故選:C8、B【解析】根據(jù)奇偶性和解析式可得答案.【詳解】由題可知,故選:B9、C【解析】設直線的傾斜角為,得到,即可求解,得到答案.【詳解】設直線的傾斜角為,又由直線,可得直線的斜率為,所以,又由,解得,即直線的傾斜角為,故選:C【點睛】本題主要考查了直線的斜率與傾斜角的關系,以及直線方程的應用,其中解答中熟記直線的斜率和直線的傾斜角的關系是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、C【解析】由冪函數(shù)定義可直接得到結果.【詳解】形如的函數(shù)為冪函數(shù),則為冪函數(shù).故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù),可得函數(shù)圖象關于直線對稱,當時,,可設,根據(jù),即可求解;【詳解】解:,的函數(shù)圖象關于直線對稱,函數(shù)關于y軸對稱,當時,,那么時,,可得,由,得解得:;故答案為.【點睛】本題考查了函數(shù)的性質的應用及不等式的求解,屬于中檔題.12、【解析】根據(jù)題意,設滿足題意得格點為,這6個回收點沿街道到回收站之間路程的和為,故,再分別求和的最小值時的即可得答案.【詳解】解:設滿足題意得格點為,這6個回收點沿街道到回收站之間路程和為,則,令,由于其去掉絕對值為一次函數(shù),故其最小值在區(qū)間端點值,所以代入得,所以當時,取得最小值,同理,令,代入得所以當或時,取得最小值,所以當,或時,這6個回收點沿街道到回收站之間路程的和最小,由于是一個回收點,故舍去,所以當,這6個回收點沿街道到回收站之間路程的和最小,故格點為故答案為:13、【解析】根據(jù)對數(shù)運算法則得到,再根據(jù)對數(shù)運算法則及三角函數(shù)弦化切進行計算.【詳解】∵,∴,又,.故答案為:14、【解析】根據(jù)函數(shù)的周期性和值域,在三角函數(shù)中確定一個解析式即可【詳解】解:函數(shù)的周期為,值域為,,則的值域為,,故答案為:15、【解析】將所給式子通分后進行三角變換可得結果【詳解】由題意得故答案為:【點睛】易錯點睛:本題考查三角恒等化簡,本題的關鍵是通分后用正弦的差角公式,在由化成時注意角的順序,這是容易出錯的地方,考查運算能力,屬于中檔題.16、(0,-2)【解析】設點坐標為,利用斜率與傾斜角關系可知,解得即可.【詳解】因為在軸上,所以可設點坐標為,又因為,則,解得,因此,故答案為.【點睛】本題主要考查了直線的斜率計算公式與傾斜角的正切之間的關系,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)有兩個零點,分別為和【解析】(1)由函數(shù)為偶函數(shù)得即可求實數(shù)的值;(2),計算令,則即可.試題解析:(1)解:∵是定義在上的偶函數(shù).∴,即故.經檢驗滿足題意(2)依題意.則由,得,令,則解得.即.∴函數(shù)有兩個零點,分別為和.18、(1);(2)【解析】(1)根據(jù)表中數(shù)據(jù)可知,隨著時間的變化,溫度越來越低直至室溫,所以選擇模型①,再列出三個方程,解出,即可得到函數(shù)模型的解析式;(2)令,即可求解得出【小問1詳解】由表中數(shù)據(jù)可知,隨著時間的變化,溫度越來越低直至室溫,就不再下降,所以選擇模型①:由前3組數(shù)據(jù)可得,解得,所以函數(shù)模型為【小問2詳解】由題意可知,即,所以,所以剛泡好的茶水大約需要放置才能達到最佳飲用口感.19、(1);(2)年.【解析】(1)設今年碳排放量為,則由題意得,從而可求出的值;(2)設再過年碳排放量不超過今年碳排放量的,則,再把代入解關于的不等式即可得答案【詳解】解:設今年碳排放量為.(1)由題意得,所以,得.(2)設再過年碳排放量不超過今年碳排放量,則,將代入得,即,得.故至少再過年,碳排放量不超過今年碳排放量的.20、(1),定義域(2),的最大面積為【解析】(1)由題意可得,再由可求出的取值范圍,(2)設,在直角三角形ADP中利用勾股定理可得,從而可求得,化簡后利用基本不等式可求得結果【小問1詳解】因為,,矩形ABCD的周長為20cm,所以,因為,所以,解得.所以,定義域為【小問2詳解】因為ABCD是矩形,所以有,因為是沿折起所得,所以有,,因此有,,所以≌,因此,設.而ABCD是矩形,所以,因此在直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論