河南省開封市重點名校2023屆數(shù)學(xué)高一上期末質(zhì)量檢測模擬試題含解析_第1頁
河南省開封市重點名校2023屆數(shù)學(xué)高一上期末質(zhì)量檢測模擬試題含解析_第2頁
河南省開封市重點名校2023屆數(shù)學(xué)高一上期末質(zhì)量檢測模擬試題含解析_第3頁
河南省開封市重點名校2023屆數(shù)學(xué)高一上期末質(zhì)量檢測模擬試題含解析_第4頁
河南省開封市重點名校2023屆數(shù)學(xué)高一上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù),若存在四個互不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.2.已知,則的值為()A.-4 B.C. D.43.已知,則()A. B.C. D.4.某幾何體的三視圖如圖所示,則該幾何體的表面積是A. B.C. D.5.已知向量,,,若,,則()A. B.C. D.6.已知函數(shù)的值域為,則實數(shù)m的值為()A.2 B.3C.9 D.277.已知在定義域上是減函數(shù),且,則的取值范圍為()A.(0,1) B.(-2,1)C.(0,) D.(0,2)8.直線l過點A(3,4),且與點B(-3,2)的距離最遠(yuǎn),則直線l的方程為()A.3x-y-5=0 B.3x-y+5=0C.3x+y+13=0 D.3x+y-13=09.設(shè)集合,則A. B.C. D.10.設(shè)常數(shù)使方程在區(qū)間上恰有三個解且,則實數(shù)的值為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.若,記,,,則P、Q、R的大小關(guān)系為______12.已知是偶函數(shù),且方程有五個解,則這五個解之和為______13.如圖,在四面體A-BCD中,已知棱AC的長為,其余各棱長都為1,則二面角A-CD-B的平面角的余弦值為________.14.已知函數(shù)是定義在上且以3為周期的奇函數(shù),當(dāng)時,,則時,__________,函數(shù)在區(qū)間上的零點個數(shù)為__________15.已知,則__________三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.近來,國內(nèi)多個城市紛紛加碼布局“夜經(jīng)濟(jì)”,以滿足不同層次的多元消費,并拉動就業(yè)、帶動創(chuàng)業(yè),進(jìn)而提升區(qū)域經(jīng)濟(jì)發(fā)展活力.某夜市的一位工藝品售賣者,通過對每天銷售情況的調(diào)查發(fā)現(xiàn):該工藝品在過去的一個月內(nèi)(以30天計),每件的銷售價格(單位:元)與時間x(單位:天)的函數(shù)關(guān)系近似滿足,日銷售量(單位:件)與時間x(單位:天)的部分?jǐn)?shù)據(jù)如下表所示:x10152025305055605550(1)給出以下四個函數(shù)模型:①;②;③;④請你根據(jù)上表中的數(shù)據(jù),從中選擇你認(rèn)為最合適的一種函數(shù)模型來描述日銷售量與時間x的變化關(guān)系,并求出該函數(shù)的解析式;(2)設(shè)該工藝品的日銷售收入為(單位:元),求的最小值17.已知函數(shù)(1)求方程在上的解;(2)求證:對任意的,方程都有解18.一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用且克的藥劑,藥劑在血液中的含量(克)隨著時間(小時)變化的函數(shù)關(guān)系式近似為,其中(1)若病人一次服用9克的藥劑,則有效治療時間可達(dá)多少小時?(2)若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值19.已知.(1)求的值;(2)若,求的值.20.近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入a(單位:萬元)滿足P=3-6,乙城市收益Q與投入a(單位:萬元)滿足Q=a+2,設(shè)甲城市的投入為x(單位:萬元),兩個城市的總收益為f(x)(單位:萬元).(1)當(dāng)甲城市投資50萬元時,求此時公司的總收益;(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?21.在中,設(shè)角的對邊分別為,已知.(1)求角的大??;(2)若,求周長的取值范圍.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】令,則,由題意,有兩個不同的解,有兩個不相等的實根,由圖可知,得或,所以和各有兩個解當(dāng)有兩個解時,則,當(dāng)有兩個解時,則或,綜上,的取值范圍是,故選D點睛:本題考查函數(shù)性質(zhì)的應(yīng)用.本題為嵌套函數(shù)的應(yīng)用,一般的,我們應(yīng)用整體思想解決問題,所以令,則,由題意,有兩個不同的解,有兩個不相等的實根,再結(jié)合圖象逐步分析,解得答案2、A【解析】由題,解得.故選A.3、B【解析】利用誘導(dǎo)公式,化簡條件及結(jié)論,再利用二倍角公式,即可求得結(jié)論【詳解】解:∵sin,∴sin,∵sinsincos(2α)=1﹣2sin21故選B【點睛】本題考查三角函數(shù)的化簡,考查誘導(dǎo)公式、二倍角公式的運用,屬于基礎(chǔ)題4、A【解析】由三視圖可知幾何體是一個底面為梯形的棱柱,再求幾何體的表面積得解.【詳解】由三視圖可知幾何體是一個底面為直角梯形的棱柱,梯形的上底為1,下底為2,高為2,棱柱的高為2.由題可計算得梯形的另外一個腰長為.所以該幾何體的表面積=.故答案為A【點睛】本題主要考查三視圖找原圖,考查幾何體的表面積的計算,意在考查學(xué)生對這些知識的掌握水平和空間想象分析推理能力.5、C【解析】計算出向量的坐標(biāo),然后利用共線向量的坐標(biāo)表示得出關(guān)于實數(shù)的等式,解出即可.【詳解】向量,,,又且,,解得.故選:C.【點睛】本題考查平面向量的坐標(biāo)運算,考查共線向量的坐標(biāo)表示,考查計算能力,屬于基礎(chǔ)題.6、C【解析】根據(jù)對數(shù)型復(fù)合函數(shù)的性質(zhì)計算可得;【詳解】解:因為函數(shù)的值域為,所以的最小值為,所以;故選:C7、A【解析】根據(jù)函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】因為在定義域上是減函數(shù),所以由,故選:A8、D【解析】由題意確定直線斜率,再根據(jù)點斜式求直線方程.【詳解】由題意直線l與AB垂直,所以,選D.【點睛】本題考查直線斜率與直線方程,考查基本求解能力.9、C【解析】集合,根據(jù)元素和集合的關(guān)系知道故答案為C10、B【解析】解:分別作出y=cosx,x∈(,3π)與y=m的圖象,如圖所示,結(jié)合圖象可得則﹣1<m<0,故排除C,D,再分別令m=﹣,m=﹣,求出x1,x2,x3,驗證x22=x1?x3是否成立;【詳解】解:分別作出y=cosx,x∈(,3π)與y=m的圖象,如圖所示,方程cosx=m在區(qū)間(,3π)上恰有三個解x1,x2,x3(x1<x2<x3),則﹣1<m<0,故排除C,D,當(dāng)m=﹣時,此時cosx=﹣在區(qū)間(,3π),解得x1=π,x2=π,x3=π,則x22=π2≠x1?x3=π2,故A錯誤,當(dāng)m=﹣時,此時cosx=﹣在區(qū)間(,3π),解得x1=π,x2=π,x3=π,則x22=π2=x1?x3=π2,故B正確,故選B【點睛】本題考查了三角函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合的思想和函數(shù)與方程的思想,屬于中檔題.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】利用平方差公式和同角三角函數(shù)的平方關(guān)系可得P、R的關(guān)系,然后作差,因式分解,結(jié)合已知可判斷P、Q的大小關(guān)系.【詳解】又因為,所以所以,即所以P、Q、R的大小關(guān)系為.故答案為:12、【解析】根據(jù)函數(shù)的奇偶性和圖象變換,得到函數(shù)的圖象關(guān)于對稱,進(jìn)而得出方程其中其中一個解為,另外四個解滿足,即可求解.【詳解】由題意,函數(shù)是偶函數(shù),可函數(shù)的圖象關(guān)于對稱,根據(jù)函數(shù)圖象的變換,可得函數(shù)的圖象關(guān)于對稱,又由方程有五個解,則其中一個解為,不妨設(shè)另外四個解分別為且,則滿足,即,所以這五個解之和為.故答案為:.13、【解析】如圖,取中點,中點,連接,由題可知,邊長均為1,則,中,,則,得,所以二面角的平面角即,在中,,則,所以.點睛:本題采用幾何法去找二面角,再進(jìn)行求解.利用二面角的定義:公共邊上任取一點,在兩個面內(nèi)分別作公共邊的垂線,兩垂線的夾角就是二面角的平面角,找到二面角的平面角,再求出對應(yīng)三角形的三邊,利用余弦定理求解(本題中剛好為直角三角形).14、①.②.5【解析】(1)當(dāng)時,,∴,又函數(shù)是奇函數(shù),∴故當(dāng)時,(2)當(dāng)時,令,得,即,解得,即,又函數(shù)為奇函數(shù),故可得,且∵函數(shù)是以3為周期的函數(shù),∴,,又,∴綜上可得函數(shù)在區(qū)間上的零點為,共5個答案:,515、【解析】將題干中的兩個等式先平方再相加,利用兩角差的余弦公式可求得結(jié)果.【詳解】由,,兩式相加有,可得故答案為:.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)選擇模型②:,;(2)441.【解析】(1)根據(jù)表格數(shù)據(jù)的變化趨勢選擇函數(shù)模型,再將數(shù)據(jù)代入解析式求參數(shù)值,即可得解析式.(2)由題設(shè)及(1)所得解析式求的解析式,再由分段函數(shù)的性質(zhì),結(jié)合分式型函數(shù)最值的求法求的最小值【小問1詳解】由表格數(shù)據(jù)知,當(dāng)時間x變換時,先增后減,而①;③;④都是單調(diào)函數(shù),所以選擇模型②:,由,可得,解得,由,解得,,所以日銷售量與時間x的變化的關(guān)系式為【小問2詳解】由(2)知:,所以,即,當(dāng),時,由基本不等式,可得,當(dāng)且僅當(dāng)時,即時等號成立,當(dāng),時,為減函數(shù),所以函數(shù)的最小值為,綜上,當(dāng)時,函數(shù)取得最小值44117、(1)或;(2)證明見解析【解析】(1)根據(jù)誘導(dǎo)公式和正弦、余弦函數(shù)的性質(zhì)可得答案;(2)令,分,,三種情況,分別根據(jù)零點存在定理可得證.【詳解】解:(1)由,得,所以當(dāng)時,上述方程的解為或,即方程在上的解為或;(2)證明:令,則,①當(dāng)時,,令,則,即此時方程有解;②當(dāng)時,,又∵在區(qū)間上是不間斷的一條曲線,由零點存在性定理可知,在區(qū)間上有零點,即此時方程有解;③當(dāng)時,,,又∵在區(qū)間上是不間斷的一條曲線,由零點存在性定理可知,在區(qū)間上有零點,即此時方程有解綜上,對任意的,方程都有解18、(1);(2)【解析】(1)分兩段解不等式,解得結(jié)果即可得解;(2)求出當(dāng)時,,再根據(jù)函數(shù)的單調(diào)性求出最小值為,解不等式可得解.【詳解】(1)由題意,當(dāng)可得,當(dāng)時,,解得,此時;當(dāng)時,,解得,此時,綜上可得,所以病人一次服用9克的藥劑,則有效治療時間可達(dá)小時;(2)當(dāng)時,,由,在均為減函數(shù),可得在遞減,即有,由,可得,可得m的最小值為【點睛】本題考查了分段函數(shù)的應(yīng)用,正確求出分段函數(shù)解析式是解題關(guān)鍵,屬于中檔題.19、(1);(2).【解析】(1)根據(jù)三角函數(shù)的基本關(guān)系式,化簡得,即可求解;(2)由(1)知,根據(jù)三角函數(shù)誘導(dǎo)公式,化簡得到原式,結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】(1)根據(jù)三角函數(shù)的基本關(guān)系式,可得,解得.(2)由(1)知,又由.因為,且,所以,可得,所以20、(1)43.5(萬元);(2)甲城市投資72萬元,乙城市投資48萬元.【解析】(1)直接代入收益公式進(jìn)行計算即可.(2)由收益公式寫出f(x)=-x+3+26,令t=,將函數(shù)轉(zhuǎn)為關(guān)于t的二次函數(shù)求最值即可.【詳解】(1)當(dāng)x=50時,此時甲城市投資50萬元,乙城市投資70萬元,所以公司的總收益為3-6+×70+2=43.5(萬元).(2)由題知,甲城市投資x萬元,乙城市投資(120-x)萬元,所以f(x)=3-6+(120-x)+2=-x+3+26,依題意得解得40≤x≤80.故f(x)=-x+3+26(40≤x≤80).令t=,則t∈[2,4],所以y=-t2+3t+26=-(t-6)2+44.當(dāng)t=6,即x=72萬元時,y的最大值為44

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論