廣西南寧市興寧區(qū)新興校2022年中考數(shù)學全真模擬試題含解析_第1頁
廣西南寧市興寧區(qū)新興校2022年中考數(shù)學全真模擬試題含解析_第2頁
廣西南寧市興寧區(qū)新興校2022年中考數(shù)學全真模擬試題含解析_第3頁
廣西南寧市興寧區(qū)新興校2022年中考數(shù)學全真模擬試題含解析_第4頁
廣西南寧市興寧區(qū)新興校2022年中考數(shù)學全真模擬試題含解析_第5頁
免費預覽已結束,剩余13頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)2.如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是()A. B. C. D.3.如圖是一個由正方體和一個正四棱錐組成的立體圖形,它的主視圖是()A. B. C. D.4.為了開展陽光體育活動,某班計劃購買毽子和跳繩兩種體育用品,共花費35元,毽子單價3元,跳繩單價5元,購買方案有()A.1種 B.2種 C.3種 D.4種5.3月22日,美國宣布將對約600億美元進口自中國的商品加征關稅,中國商務部隨即公布擬對約30億美元自美進口商品加征關稅,并表示,中國不希望打貿(mào)易戰(zhàn),但絕不懼怕貿(mào)易戰(zhàn),有信心,有能力應對任何挑戰(zhàn).將數(shù)據(jù)30億用科學記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10106.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.7.國家主席習近平提出“金山銀山,不如綠水青山”,國家環(huán)保部大力治理環(huán)境污染,空氣質(zhì)量明顯好轉,將惠及13.75億中國人,這個數(shù)字用科學記數(shù)法表示為()A.13.75×106B.13.75×105C.1.375×108D.1.375×1098.數(shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.39.一小組8位同學一分鐘跳繩的次數(shù)如下:150,176,168,183,172,164,168,185,則這組數(shù)據(jù)的中位數(shù)為()A.172 B.171 C.170 D.16810.下面的幾何圖形是由四個相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.二、填空題(共7小題,每小題3分,滿分21分)11.一個圓的半徑為2,弦長是2,求這條弦所對的圓周角是_____.12.某市政府為了改善城市容貌,綠化環(huán)境,計劃經(jīng)過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.13.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉α(0°<α<360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉角度α的值為_________,14.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.15.點A(a,b)與點B(﹣3,4)關于y軸對稱,則a+b的值為_____.16.在矩形ABCD中,AB=4,BC=3,點P在AB上.若將△DAP沿DP折疊,使點A落在矩形對角線上的處,則AP的長為__________.17.如圖,、分別為△ABC的邊、延長線上的點,且DE∥BC.如果,CE=16,那么AE的長為_______三、解答題(共7小題,滿分69分)18.(10分)計算:﹣3tan30°.19.(5分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.20.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉,在整個旋轉過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.21.(10分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學生?(2)求測試結果為C等級的學生數(shù),并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.22.(10分)某小學為了了解學生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學生進行調(diào)查,并將所得數(shù)據(jù)進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數(shù);若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內(nèi)完成家庭作業(yè)?23.(12分)研究發(fā)現(xiàn),拋物線上的點到點F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點P是拋物線上任意一點,PH⊥l于點H,則PF=PH.基于上述發(fā)現(xiàn),對于平面直角坐標系xOy中的點M,記點到點的距離與點到點的距離之和的最小值為d,稱d為點M關于拋物線的關聯(lián)距離;當時,稱點M為拋物線的關聯(lián)點.(1)在點,,,中,拋物線的關聯(lián)點是_____;(2)如圖2,在矩形ABCD中,點,點,①若t=4,點M在矩形ABCD上,求點M關于拋物線的關聯(lián)距離d的取值范圍;②若矩形ABCD上的所有點都是拋物線的關聯(lián)點,則t的取值范圍是________.24.(14分)解不等式組:

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

首先根據(jù)各選項棋子的位置,進而結合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關鍵.2、B【解析】解:當點P在AD上時,△ABP的底AB不變,高增大,所以△ABP的面積S隨著時間t的增大而增大;當點P在DE上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在EF上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減?。划旤cP在FG上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在GB上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減??;故選B.3、A【解析】

對一個物體,在正面進行正投影得到的由前向后觀察物體的視圖,叫做主視圖.【詳解】解:由主視圖的定義可知A選項中的圖形為該立體圖形的主視圖,故選擇A.【點睛】本題考查了三視圖的概念.4、B【解析】

首先設毽子能買x個,跳繩能買y根,根據(jù)題意列方程即可,再根據(jù)二元一次方程求解.【詳解】解:設毽子能買x個,跳繩能買y根,根據(jù)題意可得:3x+5y=35,y=7-x,∵x、y都是正整數(shù),∴x=5時,y=4;x=10時,y=1;∴購買方案有2種.故選B.【點睛】本題主要考查二元一次方程的應用,關鍵在于根據(jù)題意列方程.5、A【解析】

科學記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】將數(shù)據(jù)30億用科學記數(shù)法表示為,故選A.【點睛】此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.6、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.7、D【解析】

用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】13.75億=1.375×109.故答案選D.【點睛】本題考查的知識點是科學記數(shù)法,解題的關鍵是熟練的掌握科學記數(shù)法.8、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.9、C【解析】

先把所給數(shù)據(jù)從小到大排列,然后根據(jù)中位數(shù)的定義求解即可.【詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數(shù)為:(168+172)÷2=170.故選C.【點睛】本題考查了中位數(shù),如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).10、C【解析】試題分析:觀察可得,只有選項C的主視圖和左視圖相同,都為,故答案選C.考點:簡單幾何體的三視圖.二、填空題(共7小題,每小題3分,滿分21分)11、60°或120°【解析】

首先根據(jù)題意畫出圖形,過點O作OD⊥AB于點D,通過垂徑定理,即可推出∠AOD的度數(shù),求得∠AOB的度數(shù),然后根據(jù)圓周角定理,即可推出∠AMB和∠ANB的度數(shù).【詳解】解:如圖:連接OA,過點O作OD⊥AB于點D,OA=2,AB=,AD=BD=,AD:OA=:2,∠AOD=,∠AOB=,∠AMB=,∠ANB=.故答案為:或.【點睛】本題主要考查垂徑定理與圓周角定理,注意弦所對的圓周角有兩個,他們互為補角.12、10%【解析】

本題可設這兩年平均每年的增長率為x,因為經(jīng)過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【詳解】解:設這兩年平均每年的綠地增長率為x,根據(jù)題意得,

(1+x)1=1+44%,

解得x1=-1.1(舍去),x1=0.1.

答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【點睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎.13、15或255°【解析】如下圖,設直線DC′與AB相交于點E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當DC′∥BC時,旋轉角=15°;同理,當DC′′∥BC時,旋轉角=180°-45°-60°=255°;綜上所述,當旋轉角=15°或255°時,DC′//BC.故答案為:15°或255°.14、1【解析】

由兩圓的半徑分別為2和5,根據(jù)兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系和兩圓位置關系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關系.解題的關鍵是掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系.15、1【解析】

根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”解答即可.【詳解】解:∵點與點關于y軸對稱,∴故答案為1.【點睛】考查關于軸對稱的點的坐標特征,縱坐標不變,橫坐標互為相反數(shù).16、或【解析】

①點A落在矩形對角線BD上,如圖1,∵AB=4,BC=3,∴BD=5,根據(jù)折疊的性質(zhì),AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,設AP=x,則BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②點A落在矩形對角線AC上,如圖2,根據(jù)折疊的性質(zhì)可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案為或.17、1【解析】

根據(jù)DE∥BC,得到,再代入AC=11-AE,則可求AE長.【詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【點睛】本題主要考查相似三角形的判定和性質(zhì),正確寫出比例式是解題的關鍵.三、解答題(共7小題,滿分69分)18、1.【解析】

直接利用零指數(shù)冪的性質(zhì)、絕對值的性質(zhì)和負整數(shù)指數(shù)冪的性質(zhì)及特殊角三角函數(shù)值分別化簡得出答案.【詳解】﹣3tan30°=4+﹣1﹣1﹣3×=1.【點睛】此題主要考查了實數(shù)運算及特殊角三角函數(shù)值,正確化簡各數(shù)是解題關鍵.19、(1)不可能;(2).【解析】

(1)利用確定事件和隨機事件的定義進行判斷;(2)畫樹狀圖展示所有12種等可能的結果數(shù),再找出其中某顧客該天早餐剛好得到菜包和油條的結果數(shù),然后根據(jù)概率公式計算.【詳解】(1)某顧客在該天早餐得到兩個雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結果數(shù),其中某顧客該天早餐剛好得到菜包和油條的結果數(shù)為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.20、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點共線問題是解題的關鍵.本題屬于中等偏難.21、(1)50;(2)16;(3)56(4)見解析【解析】

(1)用A等級的頻數(shù)除以它所占的百分比即可得到樣本容量;

(2)用總人數(shù)分別減去A、B、D等級的人數(shù)得到C等級的人數(shù),然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結果為D等級的學生數(shù);

(4)畫樹狀圖展示12種等可能的結果數(shù),再找出抽取的兩人恰好都是男生的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調(diào)查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.圖形統(tǒng)計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結果為D等級的學生有56名.(4)畫樹狀圖為:

共有12種等可能的結果數(shù),其中抽取的兩人恰好都是男生的結果數(shù)為2,

所以抽取的兩人恰好都是男生的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.22、(1)補圖見解析;(2)27°;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論