![ISO14971的實施和應(yīng)用02準則課件_第1頁](http://file4.renrendoc.com/view/43490c354dae12c5576b7770c935ffb2/43490c354dae12c5576b7770c935ffb21.gif)
![ISO14971的實施和應(yīng)用02準則課件_第2頁](http://file4.renrendoc.com/view/43490c354dae12c5576b7770c935ffb2/43490c354dae12c5576b7770c935ffb22.gif)
![ISO14971的實施和應(yīng)用02準則課件_第3頁](http://file4.renrendoc.com/view/43490c354dae12c5576b7770c935ffb2/43490c354dae12c5576b7770c935ffb23.gif)
![ISO14971的實施和應(yīng)用02準則課件_第4頁](http://file4.renrendoc.com/view/43490c354dae12c5576b7770c935ffb2/43490c354dae12c5576b7770c935ffb24.gif)
![ISO14971的實施和應(yīng)用02準則課件_第5頁](http://file4.renrendoc.com/view/43490c354dae12c5576b7770c935ffb2/43490c354dae12c5576b7770c935ffb25.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
生產(chǎn)企業(yè)制定風險可接受性準則。應(yīng)針對特定的醫(yī)療器械制定風險可接受性準則。當然,相似類別的醫(yī)療器械可共用一個準則。要考慮到最新技術(shù)水平和可得到的信息,例如設(shè)計時現(xiàn)有的技術(shù)和實踐。
3風險準則1生產(chǎn)企業(yè)制定風險可接受性準則。制定風險可接受性準則思路和方法(即決定風險可接受性的方法,不僅限于此):如果實施并使用規(guī)定了要求的適用的安全標準,即表明已經(jīng)達到所涉及的特定種類醫(yī)療器械或特定風險的可接受性;和已在使用中的醫(yī)療器械明顯的風險水平進行比較;評價臨床研究資料,特別是對于新技術(shù)或新預(yù)期用途;
生產(chǎn)企業(yè)可將上述幾種方法結(jié)合起來使用,以決定風險的可接受水平。
3風險準則2制定風險可接受性準則思路和方法(即決定風險可接受性的方法,不
風險準則模型.doc
從圖D.1可見,概率和嚴重度的概念應(yīng)是連續(xù)的,然而現(xiàn)實中通常難以獲得大量的連續(xù)的數(shù)據(jù)。3風險準則33風險準則3實際制定風險可接受性準則時可以使用離散的數(shù)據(jù),可將圖D.1演變?yōu)轱L險矩陣(見下面舉例)。3風險準則43風險準則4X例1:二區(qū)域風險準則(定性)示例
定性概率分級高中低可忽略的中等的嚴重的定性的嚴重度分級不可接受的風險可接受的風險Y5X例1:二區(qū)域風險準則(定性)示例定高中低可忽略的中規(guī)定風險可接受性準則時,任何用于對損害的發(fā)生概率和損害的嚴重度進行定性或定量分類的體系,都應(yīng)記錄在風險管理文檔中,這樣可使制造商能夠一致地處理等同的風險。
概率水平的分類和定義。嚴重度水平的分類和定義。風險的可接受性準則舉例6風險的可接受性準則舉例6風險可接受準則舉例例1中的概率的分類和定義(定性3級)
概率水平定義(描述清楚)高很可能經(jīng)常發(fā)生,如…中可能發(fā)生,但不經(jīng)常低不大可能發(fā)生,罕見7風險可接受準則舉例例1中的概率的分類和定義(定性3級)概率嚴重度分類定義嚴重的死亡或功能或結(jié)構(gòu)的喪失中等的可恢復(fù)的(reversible)或較小的傷害可忽略不引起傷害或輕傷例1中嚴重度的分類和定義(定性3級):風險可接受性準則舉例8嚴重度分類定義嚴重的死亡或功能或結(jié)構(gòu)的喪失中等的可恢例2:二區(qū)域風險準則(半定量)定性的嚴重度分級半定量概率分級可忽略的較小的嚴重的臨界的災(zāi)難的經(jīng)常的有時偶然很少的非常少的不可接受的風險可接受的風險9例2:二區(qū)域風險準則(半定量)定性的嚴重度分級半可忽略的較風險可接受準則舉例概率的分級(半定量5級)
概率分級頻次(每年內(nèi)醫(yī)療器械發(fā)生的事件)經(jīng)常發(fā)生(frequent)>1有時發(fā)生(probable)1—10-2偶然發(fā)生(occasional)10-2—10-4很少發(fā)生(remote)10-4—10-6非常少發(fā)生(improbable)<10-6例2中概率的分級和定義10風險可接受準則舉例概率的分級(半定量5級)概率分級頻風險可接受性準則舉例例2中嚴重度的分類和定義(半定量5級):嚴重度分級定義災(zāi)難性的導致患者死亡嚴重的導致永久性損傷(impairment)或危及生命的傷害中等的導致要求職業(yè)醫(yī)療介入的傷害或損害輕度的導致不要求職業(yè)醫(yī)療介入的暫時性傷害或損傷可忽略的不便或暫時不適11風險可接受性準則舉例例2中嚴重度的分類和定義(半定量5級):
嚴度重概率輕度S4嚴重S3致命S2災(zāi)難性S1(工廠或系統(tǒng)輕度受損,人員輕傷)(工廠或系統(tǒng)部分損害,人員重傷)(工廠或系統(tǒng)大部分損害,有人死亡)(損害整個工廠或系統(tǒng),多人死亡)經(jīng)常P1>1有時P21—10-1偶然P310-1—10-2很少P410-2—10-4非常少P510-4—10-6極少P6<10-6例3:三區(qū)域風險準則示例
可接受的風險進一步降低風險的研究不可接受的風險12輕度S4嚴重S3致命S2災(zāi)難性S1(工廠或系統(tǒng)輕度(工廠或系風險可接受準則舉例例3中概率的分類和定義(半定量6級)
概率分級頻次經(jīng)常發(fā)生(frequent)>1有時發(fā)生(probable)1—10-1偶然發(fā)生(occasional10-1—10-2很少發(fā)生(remote)10-2—10-4非常少發(fā)生(improbable)10-4—10-6極少發(fā)生(incredible)<10-613風險可接受準則舉例例3中概率的分類和定義(半定量6級)概風險可接受性準則舉例例3中嚴重度的分類和定義(定性4級):嚴重度分級定義災(zāi)難性的損害整個工廠或系統(tǒng),多人死亡致命的工廠或系統(tǒng)的大部分損害,有人死亡嚴重的工廠或系統(tǒng)部分損害,人員重傷輕度的工廠或系統(tǒng)輕度受損,人員輕傷14風險可接受性準則舉例例3中嚴重度的分類和定義(定性4級):嚴生產(chǎn)企業(yè)制定風險可接受性準則。應(yīng)針對特定的醫(yī)療器械制定風險可接受性準則。當然,相似類別的醫(yī)療器械可共用一個準則。要考慮到最新技術(shù)水平和可得到的信息,例如設(shè)計時現(xiàn)有的技術(shù)和實踐。
3風險準則15生產(chǎn)企業(yè)制定風險可接受性準則。制定風險可接受性準則思路和方法(即決定風險可接受性的方法,不僅限于此):如果實施并使用規(guī)定了要求的適用的安全標準,即表明已經(jīng)達到所涉及的特定種類醫(yī)療器械或特定風險的可接受性;和已在使用中的醫(yī)療器械明顯的風險水平進行比較;評價臨床研究資料,特別是對于新技術(shù)或新預(yù)期用途;
生產(chǎn)企業(yè)可將上述幾種方法結(jié)合起來使用,以決定風險的可接受水平。
3風險準則16制定風險可接受性準則思路和方法(即決定風險可接受性的方法,不
風險準則模型.doc
從圖D.1可見,概率和嚴重度的概念應(yīng)是連續(xù)的,然而現(xiàn)實中通常難以獲得大量的連續(xù)的數(shù)據(jù)。3風險準則173風險準則3實際制定風險可接受性準則時可以使用離散的數(shù)據(jù),可將圖D.1演變?yōu)轱L險矩陣(見下面舉例)。3風險準則183風險準則4X例1:二區(qū)域風險準則(定性)示例
定性概率分級高中低可忽略的中等的嚴重的定性的嚴重度分級不可接受的風險可接受的風險Y19X例1:二區(qū)域風險準則(定性)示例定高中低可忽略的中規(guī)定風險可接受性準則時,任何用于對損害的發(fā)生概率和損害的嚴重度進行定性或定量分類的體系,都應(yīng)記錄在風險管理文檔中,這樣可使制造商能夠一致地處理等同的風險。
概率水平的分類和定義。嚴重度水平的分類和定義。風險的可接受性準則舉例20風險的可接受性準則舉例6風險可接受準則舉例例1中的概率的分類和定義(定性3級)
概率水平定義(描述清楚)高很可能經(jīng)常發(fā)生,如…中可能發(fā)生,但不經(jīng)常低不大可能發(fā)生,罕見21風險可接受準則舉例例1中的概率的分類和定義(定性3級)概率嚴重度分類定義嚴重的死亡或功能或結(jié)構(gòu)的喪失中等的可恢復(fù)的(reversible)或較小的傷害可忽略不引起傷害或輕傷例1中嚴重度的分類和定義(定性3級):風險可接受性準則舉例22嚴重度分類定義嚴重的死亡或功能或結(jié)構(gòu)的喪失中等的可恢例2:二區(qū)域風險準則(半定量)定性的嚴重度分級半定量概率分級可忽略的較小的嚴重的臨界的災(zāi)難的經(jīng)常的有時偶然很少的非常少的不可接受的風險可接受的風險23例2:二區(qū)域風險準則(半定量)定性的嚴重度分級半可忽略的較風險可接受準則舉例概率的分級(半定量5級)
概率分級頻次(每年內(nèi)醫(yī)療器械發(fā)生的事件)經(jīng)常發(fā)生(frequent)>1有時發(fā)生(probable)1—10-2偶然發(fā)生(occasional)10-2—10-4很少發(fā)生(remote)10-4—10-6非常少發(fā)生(improbable)<10-6例2中概率的分級和定義24風險可接受準則舉例概率的分級(半定量5級)概率分級頻風險可接受性準則舉例例2中嚴重度的分類和定義(半定量5級):嚴重度分級定義災(zāi)難性的導致患者死亡嚴重的導致永久性損傷(impairment)或危及生命的傷害中等的導致要求職業(yè)醫(yī)療介入的傷害或損害輕度的導致不要求職業(yè)醫(yī)療介入的暫時性傷害或損傷可忽略的不便或暫時不適25風險可接受性準則舉例例2中嚴重度的分類和定義(半定量5級):
嚴度重概率輕度S4嚴重S3致命S2災(zāi)難性S1(工廠或系統(tǒng)輕度受損,人員輕傷)(工廠或系統(tǒng)部分損害,人員重傷)(工廠或系統(tǒng)大部分損害,有人死亡)(損害整個工廠或系統(tǒng),多人死亡)經(jīng)常P1>1有時P21—10-1偶然P310-1—10-2很少P410-2—10-4非常少P510-4—10-6極少P6<10-6例3:三區(qū)域風險準則示例
可接受的風險進一步降低風險的研究不可接受的風險26輕度S4嚴重S3致命S2災(zāi)難性S1(工廠或系統(tǒng)輕度(工廠或系風險可接受準則舉例例3中概率的分類和定義(半定量6級)
概率分級頻次經(jīng)常發(fā)生(frequent)>1有時發(fā)生(probable)1—10-1偶然發(fā)生(occasional10-1—10-2很少發(fā)生(remote)10-2—10-4非常少發(fā)生(improbable
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 場地使用安全協(xié)議書范本
- 北師大版道德與法治七年級上冊2.2《學習風向標》聽課評課記錄
- 汕頭市店面租賃合同范本
- 2025年度加油站安全運營保障合伙投資協(xié)議
- 武漢市房屋租賃合同范本
- 二零二五年度土地使用權(quán)轉(zhuǎn)讓合同糾紛處理協(xié)議
- 2025年度股票委托交易與金融科技企業(yè)合作框架協(xié)議
- 2025年度高新技術(shù)企業(yè)股東股權(quán)分配協(xié)議書
- 2025年度電子商務(wù)服務(wù)代運營及跨境電商物流服務(wù)協(xié)議
- 二零二五年度綠色建筑貸款房屋買賣合同細則
- 《中國的宗教》課件
- 2025年山東魯商集團有限公司招聘筆試參考題庫含答案解析
- 大型活動中的風險管理與安全保障
- 課題申報書:個體衰老差異視角下社區(qū)交往空間特征識別與優(yōu)化
- 江蘇省招標中心有限公司招聘筆試沖刺題2025
- 綜采工作面過空巷安全技術(shù)措施
- 云南省麗江市2025屆高三上學期復(fù)習統(tǒng)一檢測試題 物理 含解析
- 建材材料合作合同范例
- 2025年集體經(jīng)濟發(fā)展計劃
- 病歷書寫規(guī)范細則(2024年版)
- 2024-2025學年人教版八年級上冊地理期末測試卷(二)(含答案)
評論
0/150
提交評論